Vol. 16, No. 4: 177-217

Inverse Kinematics — Cyclic Coordinate
Descent (CCD)

Ben Kenwright
Newcastle University

Abstract. This article examines the popular inverse kinematic (IK) method
known as cyclic coordinate descent (CCD) and its viability for creating and con-
trolling highly articulated characters (e.g., humans and insects). The reason CCD
is so popular is that it is a computationally fast, algorithmically simple, and
straight-forward technique for generating IK solutions that can run at interactive
frame rates. Whereas it can be relatively clear-cut to construct an IK system using
CCD, we address a number of engineering solutions necessary to make the CCD
technique a viable and practical method for character-based environments, such as
games. We discuss implementation details, limitations (e.g., angle limits, perfor-
mance tips, convergence problems, oscillation issues, and comfort factors), and their
applicability to articulated configurations. Whereas a plain implementation may
focus only on a single-linked chained IK problem and disregard multiple connected
hierarchical goals (e.g., articulated characters), we examine both cases. We also
examine why naive constructions of the CCD algorithm can be incorrect even,
though they converge on a solution. Furthermore, we discuss how the CCD algorithm
can be fine-tuned to produce more natural lifelike character poses that can be used
to generate realistic motions. Hence, after reading this article, the reader should have
the knowledge to design and create an effective and flexible CCD implementation
for real-time environments, such as games, while understanding and appreciating
the limitations and hazards in a practical situation.

© Taylor & Francis Group, LLC
177 ISSN: 2165-347X print/2165-3488 online

178 The Journal of Graphics Tools

1. Introduction

Inverse kinematics (IK) is an exciting and challenging subject that is used
in a wide variety of areas that include the computer generated animated film
industry, computer games, robotics, and biomedical. Although there are differ-
ent methods for solving IK problems (e.g., Jacobian William [88]), the cyclic
coordinate descent (CCD) method is one of the most computationally fast
and least complex to put into practice. The CCD IK method is an iterative
numerical algorithm that is straightforward and intuitive to implement while
also boasting the added advantage of not requiring any complex matrix math
decomposition. However, the reader needs to be fluent with elementary vector
mathematics (i.e., cross, dot product, angles).

A basic rudimentary implementation of CCD often requires numerous addi-
tional engineering adjustments to make it a feasible and practical solution.
These engineering solutions, should, ideally, not over complicate, impair, or
affect the system’s ability, speed, or robustness. To begin with, the prob-
lem starts with an arrangement of interconnected links that can be in an
unpredictable arrangement. Maneuvering and arranging these interconnected
links into a specific arrangement to achieve a particular goal is the task of
the IK solver. However, accounting for the numerous problems (e.g., angular
limits, oscillations, numerical errors, local minimums) and producing a reli-
able solution within an acceptable time (i.e., ideally, real time) can be highly
challenging and difficult.

An exceptionally challenging and difficult area for IK is the generation of
poses intended for highly articulated characters (e.g., humans). Because char-
acter IK problems are highly nonlinear and discontinuous due to the large
number of interconnected joint types and angular limits, we discuss how the
CCD algorithm can be applied to a character system and how we can modify
the basic underlying implementation to cope with the added complexity (i.e.,
multiple end-effectors, priority control, comfort factors) while remaining com-
putationally fast and robust. Furthermore, we briefly discuss the limitations
and advantages of a character-based IK solution for modifying pre-recorded
motion capture (MOCAP) animation data so it can be more interactive and
engaging in order to produce characters that are more realistic and life like.
In view of the fact that it can be costly to create a database of MOCAP
animations, it can be useful and beneficial if we can retarget these MOCAP
libraries using IK to fit dissimilar skeleton constructions (i.e., different number
of bones and dimensions) easily.

In summary, the CCD method is a heuristic (i.e., trial-and-error) iterative
approach that is ideal for real-time applications such as games because it has
a very low computational overhead per joint iteration. Furthermore, CCD
is able to solve IK problems without the need of complex mathematics or
matrix manipulations. However, it requires various engineering modifications,

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 179

which we present here, to make the technique a viable solution for a com-
plex IK system (e.g., a character with limits, comfort factors, and weighted
links). Although the basic CCD is designed for serial chains, it can be diffi-
cult to modify the solution to work well with multiple conflicting end-effector
goals. We also address the problems of erratic discontinuities and oscillation
conditions whereby the solution never converges.

There are a few governing factors that are desirable in a practical IK solver
that can be used for character-based problems. To summarize, a number of
factors that we look at in this article and address with regard to the CCD
approach are as follows:

® Complexity—avoid an over-engineered solution

® Real-time—fast as possible, numerical examples

® Diverse skeleton types (human, alien, spiders, snakes)

® Keeping balance (center-of-mass position control)

® Adaptation to constraints (feet on the ground, swap base constraints)

® Morphological adaptation (retargeting—useful for adapting motion
capture)

® Fast enough multiple figures (crowds)

® (Coherency—for small changes to the problem, the solver should find
similar answers

2. Background

IK is a hot topic of research across numerous disciplines (e.g., graphics,
robotics, and biomechanics), and there is a wide variety of interesting and
novel papers and articles on the subject; however, we present a review only of
past and recent literature that deals specifically with the CCD technique here,
starting with its initial discovery and how it has been extended and modified
over the past couple of decades to incorporate numerous enhancements to
make it a more flexible, fast, and robust IK solution.

Because of the straightforwardness and simplicity of the CCD approach,
it is surprising that the method was not published earlier. However, the
discovery of the CCD method is credited to Wang and Chen [Wang and
Chen 91] who published the technique in 1991 in a paper called “A
Combined Optimization Method for Solving the Inverse Kinematics Problems
of Mechanical Manipulators” for robotics. Then, a couple of years later,
Welman [Welman 93] extended Wang’s and Chen’s work by including
biomechanical constraints (i.e., angular limits).

180 The Journal of Graphics Tools

Since the original proposal of CCD IK, there have been many interesting
and novel articles published that have extended or used the approach while
demonstrating its advantages and potential. In fact, Lander [Lander 98] pre-
sented an easy-going article on implementing the CCD IK for singly linked
chains in real-time systems, in addition to discussing the numerous advantages
of the method for interactive environments (i.e., games).

Although the initial research showed the potential of the CCD IK method
for single-linked chain problems, Shin and colleagues [Shin et al. 01] modified
the CCD method so that it could be used for human-like figures by subdividing
the hierarchy into regions and iteratively adapting each subregion’s solution
until an answer was found. However, not long after, Kulpa and Multon [Kulpa
and Multon] extended Shin and co-authors’ [Shin et al. 01] work by producing
more human-like and natural-looking character poses by again dividing the
humanoid body into subgroups near the end-effectors (i.e., head, trunk, arms,
and legs) but extending the model to encapsulate a center-of-mass (COM)
control. The CCD algorithm was also used by Ren and colleagues [Ren et al.
10] for a humanoid character to generate running motions in real time; favoring
the CCD method over the Jacobian approach in order to avoid singular values.

Furthermore, the speed and robustness of the CCD method makes it an
ideal choice for solving a wide variety of IK problems. For example, Mahmudi
and Kallmann [Mahmudi and Kallmann 11] used CCD for solving IK prob-
lems in highly constrained kinematic character chains because it offered the
fastest results when compared with a Jacobian-based pseudo-inverse solver
method. The IK method was primarily used to control feature-based loco-
motion animations for characters and incorporated tolerance boundaries to
produce less-stiff and more-natural poses. Canutescu and Roland [Canutescu
and Roland] applied the CCD algorithm in a closed loop configuration for
protein structures.

There have been articles written that have described numerical compar-
isons between the CCD method and other approaches to show and discuss the
computational advantages and straightforwardness of the method. For exam-
ple, Mukundan [Mukundan 09] presents a single-pass IK solution (for single
chains) in an analytical comparison with the CCD technique, and Fédor [Fédor
03] does a comparison of different real-time methods, including the CCD, and
their applicability for manipulating complex skeletons.

A comparison grid is given in Table 1 to show a clear visual contrast of
some of the important differences, modification, and extensions to the CCD
technique by various researchers.

3. Overview

Essentially, IK is the method of finding one or more joint angles (and/or
link lengths) that enable a collection of joints and links to accomplish an

181

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent

‘[o1] e 30 wey (1) ‘[60] wepunsny (4) ‘[g0] pue[oy pue nosejnuey) (8) ‘(0] uoimiy

pue edny] (3) ‘[17] uuewyrey] pue pnwyely (o) [10] Te 10 ulys (p) ‘[86] wpue] () ‘[¢6] wewppm (q) [16] ueyy pue Suep (e)

-onbruyoe) M1 @D 92U} JO UOISU9)Xo oY) YINOI) paurejje usoq d2Ary Jey) soljredord juarogip o) jo uostreduwod y T S[qeT,
3J21340 3y3 Ul $31n303f 3Y3 Jo AN|IGDJIDAD 3y} fO UOIIUBW By} SAIDIIPUI M

(s4apids “3°1)13430 “(padig)g ‘(uoyd)d
(sa1ubyzawolga‘1)4ay10 ‘(s21ydonio)o ‘(sarnoqoy)y

as as ac as as/az |[suorsuounq
N A[[NJodRID SIIFUO)) S[puLH
N jo0y-oseq demg
(spmor)) sam3rg oidnny
s103091g-pug o[dnnN

ac ac ae

Rl i =
o =

d 2 2 4 o) 4 o) odK 1, uoyoYs
5 M M sy jurop
M M M M s M M wir-[edy
5 5 (e} £) 5) 5 5 Y BOIY Y0I18ISY
J J
uteyo uiof e Funewiue aimsopo dooj uratoid sonewoury nends ! ! o
SONBWAULY ISIIAUI UO 10§ wyLose 10§ uoge sam3y ayij-uewny yourlg dSIAAU] yoroxdde am3i pargnonty SWI|qoId SONBWAUTY SISAUL
poseq uiuun uewNy SONEWIAUD ISIOAUL $0110q01 :1u0sap 0] JOA] ury pue A uor 1 poseq alqixoy 10 SIIBISUO) DLIAWI0AD) 05 10j poyrow
[ENMIA JO UOnEUIS 1snqo1 v SPUIPI00 JIIKD) SHNBUIALTY ASIIAUL 152 paseg-ameag uy Anoddnd 1ondwod asow oury Supeyy PUE SonERWRUY osioAu] uoneziwndo pauiquiod
0102 600 €00T oriqung S00T U 1102 100T 8661 £661 1661
‘[e 10 udy uepumyny 2 nosenue)) 2 ediny] IpnuyeA ‘e 30 suIys Jopue UBWIA uay) 7% Suep
q E
r L
- =
Wi
a
g
m (1)

182 The Journal of Graphics Tools

objective. The system of links can be as simple as a single lever or as complex
as a human body and can have a single, multiple, or even no solution to
the problem. Hence, for each situation, we ideally want the IK solver to find
the most satisfactory (e.g., least movement) or best-guess approximation (i.e.,
when no solution exists) to the problem.

Although there can be any number of IK joint constraint types, the two
most common are the revolute and prismatic. However, for this article, we
focus on character-based IK problems that can be represented solely using
angular joint (i.e., revolute) types. Furthermore, we compound the IK expla-
nation and demonstration into a task based end-effector problem that evolves
around the calculation of joint axes and angles needed to place one or
more end-effectors at specific goals. For example, a simple multi end-effector
IK system composed of revolute joints and fixed length links is shown in
Figure 1.

END-EFFECTOR

Desired Target

Current Target

J
|

Desired Target

Current Target

[+] start.end coordinates are in world space
[+] angles are relative to the parent (local)

Figure 1. A simple IK problem with links, revolute joints, and two end-effectors.

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 183

4. Algorithm

First, we need to be clear about what we have and what problem we are
trying to solve. Essentially, we are searching for a complete set of joint angles
that will position the end-effectors at their desired locations. At any point,
we can use the complete set of joint angles to calculate the end-effectors’
distance error to the target. To do this, we propagate each link’s angle and
length forward from the base of the connected hierarchy to the end-effectors
(i.e., forward kinematics). At this point, we can identify the error between the
end-effectors and the targets, for example, as shown in Figure 2.

The CCD algorithm goes from joint-to-joint and rotates the end-effector
as close as possible to the target. After each iterative update, the algorithm
measures the distance between the end-effector and the target to decide if it
is close enough and should exit. Furthermore, to avoid infinite recursive loops
due to unreachable and conflicting goals, the algorithm must set a maximum
iteration count.

In essence, the base-root of the IK chain is immovable while each link is
iteratively rotated around a specified axis and angle degree to position the
end-effector as close to the target as possible. This axis and angle is calculated
using Equation (1) and is illustrated in Figure 2; it is also applicable to both
2D and 3D coordinates.

Forthrightly, a reader keen on implementing the CCD algorithm at this
point might naively make the mistake of inadvertently iterating from the leaf

Current

arget Target

Current

(a) Base Root

Figure 2. Shows a simple two-link chain with a single end-effector, where P., P.,
and P, correspond to three positions in world space, and 7 is the axis of rotation for
the link.

184 The Journal of Graphics Tools

(i.e., end-effector) all the way to the base-root to find a solution. By “all the
way,” we mean that every link in the connected chain of links is iteratively
checked and updated to move the end-effector closer to the target. However,
as we point out later, we can correctively update the links in any order to
achieve different results; iteratively correcting links toward the one end of the
linked chain will project the majority of the movement to those joints at that
end. For example, this can be desirable for a character’s hand movement when
it is favored that we move only his lower and upper arm to reach the target
(see Figure 9) (i.e., not his pelvis and feet). Furthermore, this can be beneficial
when multiple end-effectors (e.g., left and right arms) are both reaching for
different goals—they can avoid conflicting and fighting with each other if we
move only the links necessary to reach the final targets.

We give a straightforward, clear-cut, step-by-step example of a three-link
chain with a single end-effector to help the reader get a definitive understand-
ing of how the CCD algorithm works, in Figure 3. The example starts at the
joint closest to the end-effector of the linked-chain and rotates the link so that
the end-effector is as close as possible to the target. It then moves onto the
next link the chain and repeats. Furthermore after each iteration, it checks the
end-effector’s distance to the target, and if it is within a specified tolerance,
it has reached its goal and exits.

Pe_Pc Pt_Pc

6) — .
s =15 =R TB Rl

P, - P, P, - P,

r= X ,
HPE_PCH HPt_PcH

where the values P., P,, and P, refer to the positions in Figure 2.

The reader should be able to follow the systematic example in conjunction
with the explanation of the three-link chain shown in Figure 3 to ascer-
tain a fundamental understanding of how the CCD IK algorithm works.
Furthermore, Figure 3 helps the reader to clearly see how the two end links
quickly converge on the target, while at the same time oscillating back and
forth to complement each other on reaching a solution.

A few observations worth consideration about the CCD IK algorithm:

® Which joints and in which order they are updated (e.g., top-
down/bottom-up, or joints with the maximum error first)

® Corrective angular amount (exact or scaled up/down; e.g., more reliable
and smoother transition)

® Reach tolerances (e.g., regions for the control of the final posture)

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent

185

; +

(@)

i

Iteration 1

5

Iteration 2

©

Iteration 3

Iteration 4
B

o
=
] 2 ®© _—~
\. = 7
N 7
N\ D 7
\2| |/
N 4
\ // .

/</

Figure 3. Step-by-step example of a three-link chain with a single end-effector that
recursively iterates backward from the leaf to the base-root to move the end-effector

toward the target.

186 The Journal of Graphics Tools
5. Top or Bottom (Forward or Backward)

For a single-linked chain that is iterated along the full length, we can start at
either the leaf or root link and iteratively update the joint angles to move the
end-effector closer to its desired target.

For example, an extremely simple implementation of an interconnected
chain of links in 2D requires that we store each link’s length and angle (as
shown in Figure 1). This has the advantage of having a minimalistic memory
overhead. Furthermore, the algorithm does not require any memory overhead
(e.g., allocation of large blocks of memory as used by matrix-based approaches
[William 88, Kenwright 126]).

However, the reader may ask, why would we want to start from the bot-
tom and why would we want to start from the top of the linked chain?
Well, it depends on the circumstances and the type of effect you are aim-
ing for. For example, Mahmudi and Kallmann’s [Mahmudi and Kallmann
11] CCD IK implementation was solved from the base toward the end-effector
so that the final locomotive motions were more natural, because a majority
of a character’s movement during walking comes from its feet (i.e., a top-
down implementation from the end-effector would produce a robot-like walk).
A bottom-up approach that works from the root toward the end-effectors
will incur movement with links furthest away from the end-effectors target
because the corrective rotations start at the root and propagate outward to
the end-effectors.

Alternatively, for arms and hands, it is more desirable to go from the end-
effectors toward the base, because this offers the least disruption of the lower
links. Again, this makes sense, for an articulated human character; for exam-
ple, if we reach for an object, the majority of the motion would be in our
upper body (i.e., arms and pelvis) with little or no movement of our legs or
feet. Finally, for a bottom-up implementation, extra effort needs to be incor-
porated into the logic to determine the path from the root to the end-effector
for articulated configurations with multiple (i.e., tree-like) ends.

Figure 4, Figure 5, and Figure 6 show different examples of the contrast-
ing results between the initial starting pose and the results from using a
bottom-up and top-down solution. It can be seen that starting at the root
(i.e., the fixed base) or the leaf node (i.e., end-effector), they both converge
on a solution with the same number of iterations. The major point is that,
for the bottom-up (i.e., forward) approach, all the links will move. One other
point which will be important later on when we discuss character motions, is
that the end-effector does not necessarily move as the crow flies (i.e., directly
from the initial starting position toward the final goal) but instead can oscil-
late and circle the solution multiple times before reaching a stop distance
within the predefined tolerance.

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 187

©

3 Iterations

Figure 4. (a) Initial pose, (b) forward, and (c) backward solution.

O | ol‘ o

|
|
i } 13 Iterations

} 13 Iterations
\

(a) (b) (©)

Figure 5. (a) Initial pose, (b) forward and (c) backward solution.

o /o

1
I
|
5 Tterations | 5 Iterations
(©)

(a) (b)

Figure 6. (a) Initial simple pose reach starting; (b) forward and (c) backward.

188 The Journal of Graphics Tools

The CCD algorithms for top-down and bottom-up approaches are shown
in Listing 1 and Listing 2. Furthermore, it should be noted that Aristidou
and Lasenby combine both forward and backward CCD methods successively
to improve performance (i.e., reduce the number of iterations) and perhaps
also the homogeneity of the solution in an interesting and detailed paper
called “FABRIK: a Fast, Iterative Solver for the Inverse Kinematics Problem”
[Aristidou and Lasenby 11].

5.1. Bouncing

We can reduce movement of limbs further away from the start end by recur-
sively redoing previous links to bring them closer when we rotate children
links. Hence, as each link is rotated we recursively jump (i.e., bounce) back
to the starting end and incorporate the changes back into earlier links. The
bounce approach does not include any intelligent logic, it just recursively
bounces back to the start after each new link is updated to project the major-
ity of the link’s movement onto the starting end. For example, the implementa-
tion of the bounce code can be done with a nested loop as shown in Listing 3.

1: procedure BackwardCCDIK // i.e., Top—Downward

2: Input e // threshhold

3: Input kmax // max iterations

4: Input n // link number (0 to numLinks—1 chain)
5:

6: k=0 // iteration count

7: while (k < kmax)

8: {

9: for (int i=n—1; i;0; —i) // link index (starting at leaf)
10: {

11: Compute u, v // vector Pe-Pc, Pt-Pc (see Fig 2)
12: Compute ang // using Equation 1

13: Compute axis // using Equation 1

14: Perform axis—angle rotation (ang,axis) of link i
15: Compute new link positions

16:

17: if (|Pe—Pt| < e) // reached target

18:

19: return; // done

20: }

21: }

22: k4

23: }

24: end procedure

Listing 1. Algorithm to demonstrate what we mean, in code, for the bottom-up
update of chain of links.

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 189

1: procedure ForwardCCDIK // i.e., Bottom—Upward

2: Input e // threshhold

3: Input kmax // max iterations

4: Input n // link number (0 to numLinks—-1 chain)
5:

6: k=0 // iteration count

7: while (k < kmax)

8 |

9: for (int i=0; ijn; ++i) // link index (starting at base)
10: {

11: Compute u, v // vector Pe—Pc, Pt—Pc (see Fig 2)
12: Compute ang // using Equation 1

13: Compute axis // using Equation 1

14: Perform axis—angle rotation (ang,axis) of link i
15: Compute new link positions

16:

17: if (|Pe-Pt| < e) // reached target

18:

19: return; // done

20: }

21: }

22: k++

23: }

24: end procedure

Listing 2. Algorithm to demonstrate what we mean, in code, for a top-down of the
chain of links.

The bounce can start at either the root or the end-effector link; for example,
see Figure 7 and Figure 8. This projects the majority of the link movement
to either the start or the end. Because there is no smart logic in the detection
of movement, the movement is mostly on the end that we start from but can
still induce movement in the whole chain.

5.2. “Smart” Bounce

The bouncing method is a dumb and simple method of ensuring that the
majority of movement occurs at the start end of the iteration. It does not
include any checking or analyses if a link moved, and if it should return to the
start to incorporate the changes. Hence, we can incorporate additional tests
to decide if it is necessary to move the links further along the chain, or if it
can be accomplished by moving only the links at the start end (i.e., only move
links if necessary).

We extend the bounce strategy of repeatedly returning to the start and
working back along the links (as shown in Listing 4). However, we include
a “smart” check that identifies if any movement has occurred while we
are moving down the link. If a movement has occurred, then we return to

190 The Journal of Graphics Tools

1: // Top-Downward ‘Bounce’—

2: // recursively returning to the

3: // top-reduce movement of the lower links

4: procedure BackwardBounceCCDIK

5: Input e // threshhold

6: Input kmax // max iterations

7 Input n // link number (0 to numLinks-1 chain)
8

9: k=0 // iteration count

10: while (k < kmax)

11:

12: for (int b=0; bjn-1; ++b)

13: {

14: for (int i=n-1; i;b-1;—i) // link index (starting at leaf)
15: {

16: Compute u, v // vector Pe-Pc, Pt-Pc (see Fig 2)
17: Compute ang // using Equation 1

18: Compute axis // using Equation 1

19: Perform axis-angle rotation (ang,axis) of link i
20: Compute new link positions

21:

22: if (|Pe-Pt|<e) // reached target
23: {

24: return; // done

25: }

26:

27: // e.g. (link 5 - starting at the top):

28: /] 5

29: // 5,4

30: // 5, 4,3

31: /] 5,4,3,2

32: // -

33: }

34: }

35: K+

36: }

37: end procedure

Listing 3. Algorithm to demonstrate what we mean, in code, for the simple bounce
approach for updating each link.

the start and iterate along the linked hierarchy again. This has the added
benefit of preventing the unnecessary movement of links (i.e., limbs) that
are furthest away from the start end. This is highly beneficial later on when
we have multiple end-effector constraints connected to a shared hierarchy.
For example, if we have a character with two arms and both arms are being
moved about, if they can reach their targets without affecting the body or
pelvis this means that the two movements will not conflict or cause a problem
in solving a solution for the IK problem (e.g., see Figure 9).

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 191

O (‘ ©) 6
91 Iterations | 91 Iterations

| N S

(2) (b) ©

Figure 7. (a) Initial pose, (b) bouncing forward and (c) bouncing backward.

O 1)
{ iq‘
!

|
(L) ()

O

15 Iterations

|

{ 15 Iterations
|

a

Figure 8. (a) Initial character pose, (b) bouncing forward, and (c) bouncing
backward.

The downside, however, of a “smart” bounce implementation is that we
need to incorporate an additional check into each iteration. Furthermore, it
can require more iterations to converge on a solution because it has to return to
the start more times and move smaller corrective rotations of the start links.
For long chains, it has the added advantage of moving only the necessary
number of chains needed.

Note, for small IK problems (e.g., one or two links) an analytical solution
is a fast and easy approach that we can apply to solving leaf node IK prob-
lems (i.e., the first and second start ends). Whereby, mixing in an analytical
solution would quickly allow us to adapt end links if necessary with a lower
computation cost, compared with completely redoing the iterative process, as

192

The Journal of Graphics Tools

1:// Top-Downward ‘Smart Bounce’-
2:// Analyze and returning to the

3:// top-prevent movement of the lower
4:// links if not needed

5: procedure BackwardSmartCCDIK

6:
T
8:
9.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

Input e // threshhold
Input kmax //max iterations
Input n // link number (0 to numLinks-1 chain)
k=0 // iteration count
while (true)
{
for (int i=n—1;i>0; ——i) // link index (starting at leaf)
{
Compute u, v // vector Pe-Pc, Pt-Pc (see Fig 2)
Compute ang // using Equation 1
Compute axis // using Equation 1
Perform axis-angle rotation (ang, axis) of link i
Compute new link positions
if (|Pe-Pt|<e) // reached target
{
return; // done
}
if (k/n) j kmax) // divide by n so iterations
{ // count is per chain length
return;
}
// If the link’s corrective rotations exceeds
// the tolerance-redo other links
if (angle ; 0.001)
//Restart at the end-link
i=n+1; // +1 ‘for’ loop subtracts 1
}
k++
}
}

end procedure

Listing 4. Algorithm to demonstrate what we mean, in code, by a smart bounce
method of updating links (end-effector backward towards the base).

done by Shin and colleagues [Shin et al. 01] and Kulpa and Multon [Kulpa
and Multon 05].

For articulated character figures, it is desirable that a small change in end-
effector position corresponds to a small coherent change in joint angles (i.e.,
we want to avoid sporadic random jumps for small end-effector movements).

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 193

T S/ /N N A

IK ROOT

Figure 9. (a) Iterating all the way to the root joint to accomplish the end-effector
reach. (b) Alternative, smarter method of jumping back to the start joint after each
iteration if the previous links can still be moved closer to the target.

Hence, the smart bounce CCD implementation accomplishes this by moving
only those links necessary to accomplish the task. For example, if we take a
human character and we have his hand move forward and pick up an object,
we can accomplish this by moving only two links (i.e., lower and upper arm).

The advantage of rotating links that only need to move to reach the solution
means we have a lower computational cost. Furthermore, the solution is more
stable because there is less movement and fewer oscillations of the links around
the answer.

The example in Figure 10 shows a simple skeleton pose with a single end-
effector being moved around. However, the crucial information is that we

O

150 Iterations 170 Iterations

| | | |

{\ [\ \ W

I \ f f

| | 90 Iterations /| i
[

Ja) (b |(C) ‘(d)

Figure 10. (a) Initial pose, (b)-(d) moving the links that need to be moved to
reach the target—smart approach.

194 The Journal of Graphics Tools

are now moving only the upper links to achieve the target. Furthermore, we
are using more iterations than previous versions that do not check if we can
continue reaching the target with the end-effector links. In addition, we do
not need to update the rest of the hierarchy, which can be highly beneficial
if we have multiple end-effectors, because they will not interact or interfere
with one another (e.g., the left and right arms).

6. Link Distance Limits

We can incorporate a maximum link count limit for each end-effector, so
links over a predefined number of steps away from the end-effector are not
updated. This can provide us with additional posture and performance control
and prevent certain end-effectors disrupting and affecting links that we do
not want them to move. For example, we can define a maximum number of
link steps that can be updated by an end-effector of a character’s hand so
that only the lower and upper arms are allowed to move to reach the target.
Any further links beyond the link count (i.e., past the upper elbow) will bes
ignored.

7. Angular Limits

Animated characters (e.g., human figures) have limits on how they can move
and reach. For example, when we simulate an arm reaching we do not want
it to bend in unnatural and impossible ways. We want to impose joint
constraints, such as angular limits and degrees of freedom (DOF) that can
represent the elbow or knee. Each joint can twist and stretch only so far.
This also raises the question of comfort because it can appear more natural
to move certain limbs to achieve a task (e.g., reach with our arms or bend
our legs to pick up an object). A popular method that is used in IK schemes
[Kenwright 126] and what we employ in this article is to iteratively clamp the
angles after each update to ensure that they always remain within acceptable
limits.

Angular limits can be the most challenging and difficult aspect of the CCD
IK solution. After each iteration, the limits are checked and clamped to ensure
that they are always enforced. However, it can affect CCD’s ability to converge
on a solution. Essentially, CCD is blind and will repeatedly keep trying a
particular route, even though after each increment the joint gets pushed back
because of angle limits. We can detect this scenario and attempt to solve
this problem by restarting the joints at different random locations (known
as simulation annealing—see Dowsland [Dowsland 95] for an easy-to-follow
introductory explanation).

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 195

4 *) h
{ R 3D B
— | o
4 + %t
g ® §>
S
S
N H
N — J
4 + + b
-
§
B §> S
2
o e %
7 aE T N
S @ ¢>
E H
, |)
K : -
- *_ N
\ s @
NNl &)
N\ 8 S
\ = i
4 3
b v .

= — >,

Figure 11. Step-by-step example of a three-link chain from (a) to (e) recursively
moving the end-effector position closer to its desired target.

196 The Journal of Graphics Tools

Simulation annealing approaches:
® Random joint pose

® Start with a prestored joint pose (large number of best poses from which
we try to guess the best, e.g., approximate distance error)—difficult to
find the closest cluster match

Considerations:
® Tunneling (jumping across angular limits)
® [ongest or shortest path
® Randomly orientating joints to find solutions

For systems that desire smooth interpolation, the CCD IK system itera-
tively churns alway and finds the solution of angles for the overall system
that we pass to the interpolation algorithm for the smooth interpolation
(e.g., quaternion spherical linear interpolation—i.e., SLERP—for continuous
smooth movement).

Because we are using discrete values after updating the links with their
new angles, we may have jumped into an invalid angular region and should
determine the shortest distance to rotate the link to get it out of penetration.

7.1. Visualizing Angular Joint Limits

It can be difficult to visualize the joint limits on complex character models.
However, a cone offers a good visual representation of the upper and lower
boundaries of rotation available to the link. Note, the joint’s angular limits
are with respect to the parent’s orientation; hence, a cone boundary can be
drawn using the parent’s transform, because the upper and lower limits are
relative to the parent. For example, Figure 12 shows the constraint cones for
a simple 2D chain.

There are numerous ways of representing and calculating the angular joint
limits. For example, one approach is to use Euler angles, whereby, you spec-
ify upper and lower limits with respect to the parent. In 2D this may be
fine, however, for 3D it is necessary to use a less ambiguous method (e.g.,
quaternions). For joints with multiple degrees of freedom (e.g., a ball joint),
we can decompose the quaternion into individual components using a “twist-
and-swing” approach so that we can reliably and robustly clamp 3D angular
limits.

In this study, we follow the convention that the bone’s local transform is
orientated along the z-axis (i.e., if you are looking along the bone you will
be looking down the z-axis). Furthermore, we use quaternions to represent

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 197

Constraint
Cones

~

ecemer

offset

Upper Limit Lower Limit
~—~

eparent

(@) (b)

Figure 12. Visualizing constraint limits as cones.

the joint angle transforms, so it is relatively easy and computationally fast to
calculate angular differences in order to identify limits. If a link rotates out
of its allowed region, it is snapped back to the limit edge (e.g., by means of
axis-angle and twist-and-swing decomposition).

Quaternions allow us to manage angular differences, for example:

® Direction of the link (or bone)
® Orientation—up, right, forward for each link (or bone)

® [Handle twisting

8. Over and Under Damping (Angle Delta)

The CCD iterative algorithm can take a number of oscillatory iterations to
converage on an acceptable solution. We can reduce the number of itera-
tions by introducing a biasing factor into each iteration’s corrective rotation.
Whereas, by default, we use the angle to rotate the limb, so the end-effector is
as close as possible to the target. However, to accelerate convergence, we mul-
tiply the angle by a bias factor (e.g., 1.1 to 1.2). This means the end-effector
will overshoot and pass the target; nevertheless, for a serial chain of links, it
can reduce the number of iterations needed for the end-effector to converge
on a solution. For example, Figure 13 shows a step-by-step example with a
biasing factor of 1.2 compared with the example in Figure 11 that had no
biasing.

On the other hand, it is difficult to choose an under-damped (i.e., magnifi-
cation) value that provides an overall stable and fast solution. Furthermore, if

198 The Journal of Graphics Tools

4 ax T N
SO
&
. &)
K I i’
4 + N
:'
SIG)!
2
RS
\& e
/
S
§ ©) °
RS
N [)
/ s N
:
Sl @
T

Figure 13. Step-by-step iterative example of the corrective angle scaled by 1.2 to
accelerate the convergence on a solution.

the value is to large, it can ultimately result in large oscillations and prevent
convergence. However, we can improve convergence by adding an additional
feedback constant. This feedback constant is the error magnitude (i.e., dis-
tance between end-effector and target). We multiply the error feedback with
the under-damped factor to produce smaller values closer to the target (i.e.,
to reduce the overshoot error). One final note: in practice, it is crucial that
the under-damped values are clamped to acceptable limits (i.e., min and max
range) so the simulation always remains stable and controlled.

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 199

Alternatively, instead of magnifying the result to achieve a faster conver-
gence, we can use a dampening magnitude that is less than 1.0 (e.g., 0.9 to
0.8). This can produce a smoother result with less overshoot of the target.
However, it can again require user intervention and manual tweaking to deter-
mine a suitable set of values for the desired system. This also moves in the
direction of “per-joint” weighting, whereby, different joints can have different
bias factors so that different joints converge on the solution at different speeds
to try to achieve a desired movement.

9. Multiple Links

Although chains are a good test bed, the majority of the time a character-
based rig will have more than one end-effector (unless you are simulating a
snake or a worm) and so you will have multiple end-effectors and a single
base-root (see Figure 14).

However, you may ask what happens when we have multiple end-effectors?
Well, it depends on the circumstances of the configuration (e.g., if they are
out of reach and the order they are in is updated). For example, if each end-
effector can reach its goal without needing to disturb and move shared links,
then each end-effector will reach its target position (as shown in Figure 14).
Alternatively, if a shared link needs to be moved, the end-effector that is
updated last will get priority and the other links will be pulled away. For

N
oy >
-~ //// ~
/// \\\\
7 < N
I \ \ 7 >
o N V4
b
\ /"‘:’j f
R /
0 gt
\
‘ (a) (b)

Figure 14. (a) A tree configuration of 19 links and 4 end-effectors. (b) Biped con-
figuration (12 links) with the left foot as the root and 3 end-effectors for the hands
and right foot—also showing the angular joint limits.

200 The Journal of Graphics Tools

Solved Second

\>

Solved First

Solved Last

End-Effector Targets

Figure 15. Multiple end-effectors (last end-effector updated using CCD is primary).

example, in Figure 15, we have three links and each is updated one after the
other, and we can see how the last end-effector is the one that is primary.

9.1. Ordered Priority

Having the last updated link take priority can be a desirable effect, because
the order in which we solve each end-effector target problem is the order of
priority. Therefore, we have an ordered priority tree. For example, the primary
problem will be solved; however, if the secondary problem can be solved it will
be, or a best-guess closest approximation to solving the secondary goal will
be made, while the primary problem remains solved.

9.2. Equal Priority

We can make multiple links have equal priority when their goals conflict
by weighting “shared” links between the end-effectors. For example, we can
identify which links are shared between multiple end-effectors, then include a

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 201

weighting factor so that their angular change is shared among the numer-
ous end-effectors. As a side note, it should be mentioned that weighted
joint constraints can also be used to control the importance of joint move-
ment when solving the IK problem. However, in practice, constraints are
often used with priority (e.g., to ensure that stance poses are enforced at
all times).

10. Retargeting Character Motions with IK

IK is an excellent method for retargeting character motions to achieve specific
goals. For example, preventing feet from slipping and have hands and arms
links move so that they reach and touch their desired targets. Furthermore,
IK can modify MOCAP data to accommodate different character skeleton
types; however, not too different (see Figure 16), otherwise the positions of
the end-effectors can be greatly mismatched and result in strange, unnatural,
and unfeasible poses.

We can make motions more casual and less stretched and uncomfortable
by incorporating reach limits for each joint by defining reach windows. The
reach window is a predefined region or area for each joint that they cannot go
beyond, and thus controls how stretched a chain of links may appear, because
as they reach their reach window, they pass their movement along to the next
attached joint.

Interpolating changes in joint orientation using quaternion spherical linear
interpolation (SLERP) enables us to generate consistently smooth character
motions. However, angles should not exceed 7 radians, and in practice should
be as small as possible, because angles greater than 7 are indistinct. Hence,

O

—0U Ue—

Figure 16. End-effectors position constraints applied to different skeleton types.

202 The Journal of Graphics Tools

during each iteration, you should ensure that large angular displacements are
clamped to permissible values in order to guarantee that the IK solver remains
stable. Hence, to reiterate, to ensure motions are always smooth and constant,
it is preferable to clamp and interpolate the angular displacements between
updates. Note, for small angular changes it is easier and more efficient to use
a normalized linear interpolation (NLERP), which is applicable to 2D and
individual Euler angles.

11. Comfort Factors

An interesting and novel technique for producing character poses that are
more natural looking and casual by means of the CCD IK technique was
presented by Mahmudi and Kallmann [Mahmudi and Kallmann 11]. Although
the originally proposed technique was used as a branch deformation technique,
it also helps to produce poses that are less rigid and more comfortable looking.
For example, when a character reaches to pick up an object, the whole arm
will move, even if the object can be reached without needing to move the
upper arm. The approach is very simple and elegant and works by adding
tolerance regions to each link’s goal. As each link is iteratively rotated toward
its goal, if it comes within its defined tolerance of the target, it stops and
moves onto the next link (see Figure 17).

An alternative technique that can be used to produce less abrupt joint
changes and more smooth and casual poses for character movement is to
use under-damped angle scaling, as discussed earlier. Whereby, each joint

Region

N

(b)

Target Goal

(a) (©)

Figure 17. Reach regions so poses look less casual and comfortable (a) shows the
starting pose and joint regions, (b) result without regions, and (c) result with regions.

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 203

moves only a small amount toward the goal and distributes the movement
across multiple links. However, this can result in more iterations and increased
computational cost.

12. 2D to 3D

The 2D implementation is much simpler than the 3D one, because the 2D
version has a single axis and a single angle whereas the 3D version can have
three primary axes (z, y, and z) around which we can rotate (i.e., three
angles). This can make the 3D version vastly more complex to solve and can
introduce singularities and result in unnatural and uncomfortable poses.

Whereas in 2D it is possible to store each link’s local angle and length and
up-date the hierarchy each frame, for 3D this is inadequate. Naively, you could
use Euler angles to represent the three axis orientations (z, y and z); however,
this method can suffer from gimbals lock and ambiguity. Alternatively, the
popular approach for representing each link’s 3D orientation in the hierarchy is
with matrices (i.e., Denavit-Hartenberg [Denavit and Hartenberg 55] conven-
tion), quaternions [Shoemake 85] or dual-quaternions [Kenwright 12a]. These
methods are straightforward to work with and are combined through con-
catenation (i.e., multiplication). However, quaternions and dual-quaternions
are more efficient and are less ambiguous, can be interpolated, easy to invert,
and correct for numerical drift, Furthermore, it is simple to take the axis-
angle calculation from Equation (1) and convert it to a quaternion, matrix,
or dual-quaternion representation, then apply it to the current link.

The same 2D technique (i.e., axis and angle) can be used in 3D, as shown
in Figure 18 and Figure 19.

12.1. Local and World Coordinates

The axis-angle calculation from Equation (1) can be converted to a quaternion.
However, the axis-angle quaternion is in world space and must be converted
to local space. This is crucial for 3D (but unnecessary for 2D), otherwise links
will oscillate, sporadically rotate, and do strange irregular movements that
ultimately prevent the system from converging.

= cos Q
Guw = 5
Qs = N, sin 5 gy = N, sin 5 q. = n.sin 5)

where ¢ is a quaternion, 6 is the angle, and n is the axis of rotation.

204 The Journal of Graphics Tools

Figure 18. Tree configuration with 32 links (peak of 60 iterations at the start and
10 iterations on average for interactive movement).

| (@

Figure 19. Many links (i.e., 100 links) connected in a tree-like configuration with
14 end-effectors moving in 3D (with a peak of 100 iterations initially, as a result of the
end-effectors jumping at the start of the simulation and an average of 10 iterations
for small rotations from then on). (a) Initial pose (b)—(c) end-effectors gradually
rotated around the trunk.

It is very straightforward to convert the axis-angle representation of
Equation (1) to its quaternion form as shown in Equation (2). Then we can
store each links local and world orientation as a quaternion, which makes it
extremely easy to convert from world to local coordinates (and vice versa),

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 205

because the inverse of a unit-quaternion is the conjugate, which is an algo-
rithmically simple and computationally fast operation, and is accomplished
by negating the vector component part (i.e., ¢,, ¢,, ¢.) of the quaternion.
Hence, to calculate the new local orientation for the link we use Equation (3).
Additionally, because there is a limited amount of accuracy in floating-point
operations that can result in numerical drift and approximation errors, we can
reduce this by renormalizing the quaternion at key points (i.e., easier to correct
drift and renormalize a quaternion compared with a pure matrix method).

Qocal = q;arent (Qincrementqworld) ’ (3)

where ¢iocal and @uora are the local and world orientation of the link, ¢* arent
is the conjugate of the parent link orientation, and gi,crement 18 the corrective
rotation using Equation (1) and Equation (2).

13. Articulated Characters

The body of an articulated character is divided into numerous interconnected
links with multiple end-effectors (e.g., hands, head, and feet). The links (i.e.,
bones) are connected by numerous angular joint types (e.g., hinges and ball
joints) that we can represent using multiple concatenated single degree of
freedom (DOF) angular joints with zero length (e.g., see Figure 20). We can
create a single DOF angular joint by modifying the basic revolute (i.e., ball
joint) equation for CCD by projecting the axis of rotation onto the plane so
that we obtain a single axis-of-rotation error.

Right ; Left
Hand :; :; Hand
Y
Lz |
X

Figure 20. Representing an articulated biped character by cascading multiple single
degrees of freedom (DOF) joints.

206 The Journal of Graphics Tools

19 s

3 Separate Quaternion
Single-DOF Joints (Twist-and-Swing)

Y

Figure 21. The ball joint, with multiple DOE joints. We can either decompose the
joint into separate multiple single DOF parts (i.e., three separately connected single
DOF joints with their own limits), or as a single quaternion, which we decompose
into its swing-and-twist components to enforce joint limits.

Iteration Timing

80
;
70 e TP
60
=
35 so
E} A
R 40 =
— 3
2 5
w
L
20 2.
0 A 1489
7.45
o 3.72
075
00 2000 4000 6000 8000 10000 12000

Number of Iterations

@ (b)

Figure 22. Timing information for a 20-link chain in 3D with a single end-effector.
With each iteration, we update the full hierarchy and do a top-down analysis of the
error of each link angle.

We can reduce the problem of working in a highly discontinuous and
nonlinear workspace (i.e., angular limits with multiple solutions) for the IK
solver by using a library of prestored lookup character poses. Therefore, the IK
solver can search the repertoire of actions to find the best matching pose as an
initial starting approximation for the IK solver. This approach also allows the

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 207

final motion to possess natural and lifelike properties, which can be influenced
by the animation data and hence an artist (i.e., controllable attributes). For
example, how a character would get up after a fall, or place his/her arms when
climbing a wall. Furthermore, for a more advanced implementation, the TK
solver in conjunction with the animation library can generate torques to con-
trol a physically accurate rigid body representation to produce more dynamic,
responsive, and interactive characters [Van Welbergen and Ruttkay 09].

The biped model shown in Figure 20 has the base-root for the IK solver
at the foot. We swap the base-root from foot to foot during walking (i.e.,
support foot is the base-root) and the pelvis is made the root for any other
cases (for example, jumping or falling) when the body is not in contact with
the surroundings. However, to accomplish this, we need to be able to reassem-
ble the hierarchy from a different point while maintaining the current pose.
We accomplish this by starting at the new base-root joint, reiterating along
the hierarchy, and recalculating each joint’s orientation so that it corresponds
with the old base-root world coordinates. A note to the wise, when re-rooting
the base, the local transform for each joint (i.e., local root of each bone) needs
recalculating, and can affect branching and the hierarchy structure.

14. Quaternion Twist-and-Swing Angular Limits

For simple joints (e.g., 1-DOF hinge) we can easily enforce angular limits by
means of clamping angles. However, for complex joints that contain multiple
degrees of freedom (i.e., 3-DOF) we can decompose the quaternion into a
twist-and-swing component to ensure that angular limits are kept (e.g., see
Figure 21). For example, in Figure 20, we connected complex joints, such as
the shoulder, by means of multiple single-DOF joints; however, we can form
similar joints, such as a ball-and-socket joint, and ensure that the angular
limits are enforced by means of a quaternion twist-and-swing decomposition.
The twist-and-swing allows us to define and enforce joint limits intuitively.
For example, the twist is around the z-axis while the swing is around the
zy-plane. We can decompose a quaternion orientation into its twist-and-swing
components shown in Equation (4). Note, the twist-and-swing limit is in world
space but can easily be converted to local space (i.e., joint space).

q - Guw 0.0 q-
twist z —]
VE+a& Vet E

Guwlz — quz quy — 429
. — /2 2
Gswing zy (o + qzs 07 (]120 T qg ’ qﬁ, T C]g) ’

q = QSwingxy Qrwistz

208 The Journal of Graphics Tools

where ¢ is the original quaternion representing the rotation; ¢., ¢., q,,
and ¢, are the components. We can multiply the separate twist-and-swing
quaternion components together to construct the final quaternion. If we do not
change the separate twist-and-swing components (e.g., clamping), then mul-
tiplying them together gives us the original quaternion. (Note, the algebraic
proof of twist-and-swing is given in the appendix.)

15. Coding Reliability Remarks (Fast vs. Robust)

The reader should be aware of not-a-number (NAN) problems during imple-
mentation caused by impossible numerical calculations. For example, dividing
a number by zero or normalizing a zero-length vector. In the majority of cases,
if you perform an invalid calculation that results in a NAN, then the simu-
lation will proceed as normal and the error will propagate until the whole
system falls down, because any operation (i.e., addition, multiplication, and
so on) performed using a NAN results in a NAN answer. It can happen at the
most unlikely places, and if you are not vigilant and careful it can be almost
impossible to identify the cause of the problem.

The best practices are to incorporate as many sanity checks and asserts
within the code to trigger halts or log problems as they occur so they can be
identified and fixed easily and quickly.

Typical problems to keep an eye out for:

® A cross product normalized without checking if the two vectors were
perpendicular

® Cross product with almost perpendicular vectors (very noisy jittery
result)

® Miniscule oscillations around the target resulting from numerical inac-
curacies caused by rounding approximations

® Trigonometry (e.g., boundary checks for trig functions)

® Numerical rounding (e.g., 0.2 becomes 0 when converting a float to
integer)

For example, a hidden trigonometry bug that can cause serious ramifications
if left unmanaged is the calculation of the popular acos. The problem arises
from numerical errors as floats and rounding approximations that can result in
slight differences (i.e., trying to calculate acos (1.000001)). Because the acos of
a number greater than 1 (or less than —1) will result in a NAN, everything will
explode if the result is allowed to be used in other calculations and propagate
throughout the system.

Some programmers will try to avoid the additional sanity checks will assert
logic (i.e., if statements) within time-critical loops to try to achieve maximum

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 209

speed; however, it is no use having a fantastically fast implementation that
crashes 5% of the time. It is worth the extra effort of implementing a test
bed to try out your CCD IK implementation and try to catch and identify
any anomalies or bugs before you integrate the system into a larger project.
For example, interpolate the end-effectors through numerous trajectories and
visually watch that the solution consistently converges without jittering and
exploding. A bit of extra time testing and adding sanity checks can save hours
or days of painstaking extra debugging trying to track down erroneous and
difficult-to-repeat bugs.

16. Performance

The CCD IK method is an iterative method that gradually converges on
a solution, and hence, its performance cost revolves around the cost of each
iteration and how many iterations are necessary for the IK system to converge.
However, it is good to know that the computational cost per iteration is
minimalistic, requiring only a dot and cross product. Furthermore, we are
able to exploit coherency, because small changes between frames require fewer
iterations to find a solution.

For real-time systems, speed is always a crucial consideration and so you
should avoid computationally expensive and complex calculations (e.g., such
as sin, cos, sqrt) within the main iteration loop because these operations will
be performed many times. In retrospect, for a large implementation (such as
crowds of characters, each possessing IK), we can expect the internal iteration
loop to run hundreds or thousands of times per frame. Furthermore, with any
simulation or code, the secret to identifying bottlenecks or problem areas is
with profiling. This will show you why and where the slowest part of the
algorithm is and how you can begin to make it run faster. In addition, for
interactive character systems, it may not be necessary to run the IK solution
every frame because the results from each IK solution are interpolation using
SLERP or NLERP for angles with small changes (i.e., in 2D or individual
Euler angles in 3D).

The CCD method is capable of solving numerous diverse skeleton types
with multiple end-effectors in real time reliably and is even computation-
ally fast enough to simulate large crowds of characters in real time (e.g., see
Figure 23).

16.1. Number of Iterations

The number of iterations needed for the CCD IK method to converge on an
answer depends upon how large a change has occurred since the previous

210 The Journal of Graphics Tools

Figure 23. (a) Multileg multiarm skeleton decomposition with 20 links, (c) biped
skeleton with 11 links and 30 DOF, and (c) crowd of 100 skeleton bipeds.

solution. Hence, for small changes between frames there are fewer iterations
and no update overhead on sublinks that have had no change in end-effector
position.

Infinite loops can occur if tolerances are made too large and links are allowed
to oscillate around the solution without converging on an answer. There is
also the problem of numerical inaccuracies and rounding approximations that

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 211

must be accounted for (e.g., almost perpendicular vectors, and renormalizing
quaternions between frames for large hierarchies).

To give a numerical association of the computational cost of iteratively
updating an articulated CCD IK chain, we did a plot of time against the
number of iterations for a 20-link chain shown in Figure 22. We performed
the simulation in C# with Windows 7 x 64 OS using an Intel i7-3.4 Ghz and
16 GB RAM machine in Visual Studio 2010. Furthermore, we used quaternions
to represent each hierarchy link’s orientations and no optimization enhance-
ments were incorporated, so the results present a worst-case timing scenario.
The results show us that we can perform thousands of iterations each frame
and stay well within the boundary of achieving real-time results, whereas we
found in practice that it is typical to expect a worst-case of between 100 and
300 iterations for large movements of the end-effectors.

17. Discussion

The CCD algorithm is an elegant, straightforward, and robust technique for
generating IK solutions in real time. The CCD method can be used for both
serial chain and multiple (i.e., tree-like) chain problems. The basic algorithm
can be modified to produce character poses that are less rigid and robotic-like
and more casual and human-like. Furthermore, the algorithm is computation-
ally fast enough to be used to generate continuous motion from trajectory
paths at interactive frame rates.

We have shown the reader how the CCD algorithm can be modified to
incorporate additional features to make it a suitable method for different situ-
ations (e.g., character poses, articulated chains, trees and snakes). In addition,
whereas CCD is a computationally fast algorithm, it is flexible enough to trade
speed for accuracy in certain circumstances (e.g., updating different parts of
the hierarchy and tolerance limits).

Advantages:

® Simple to implement
® Computationally fast
® Stable around singular configurations

® Can be used with other methods to produce a fast, robust hybrid
solution

® Low memory overhead
Disadvantages:

e Difficult to create smooth motions (need to solve and interpolate, or use
smaller steps but slower)

212 The Journal of Graphics Tools

® Need to clamp deltas to prevent erratic jumps

® Difficult to support nongeometric constraints (e.g., position of the total
center of mass)

18. Further Reading

It is recommended that the reader take a hands-on approach to help him
or her solidify understanding and enable appreciation of the elegance and
simplicity that the CCD algorithm uses to solve a complicated, ambiguous
problem. Although it is hoped that this article has opened the reader’s eyes
to a number of appealing and novel ideas regarding the CCD algorithm and is
practicality for real-time character systems, there are still a number of inter-
esting and challenging areas for the reader to pursue if he/she so desires. For
example, although the CCD algorithm is computationally fast, the reader can
investigate further software and hardware tricks to try to push the algorithm
to its limits and gain the maximum possible amount of speed. This can be
through profiling or modification of the algorithm (e.g., fast sin/cos, stack
push/pop instead of recursive calls).

Furthermore, we have not touched on the area of parallel processing of the
CCD algorithm for multichain IK problems. A prepass phase could identify
individual (i.e., not connected) chains that can be solved separately on differ-
ent threads. Alternatively, the same configuration can be solved multiple times
on different threads with diverse starting approximations simultaneously to
ensure a greater chance of finding a solution; IK angular limits can make
the problem highly nonlinear because of dead regions and can require the IK
solver to try to solve the problem by using different starting approximations.

Acknowledgments. We are indebted to the reviewers for taking the time and
for providing invaluable comments and suggestions to help to improve the quality
of this paper.

Appendix A

A.1. Proof of Twist-and-Swing Decomposition Formula

We show through quaternion algebraic mathematics the proof for Equation (4) and
how a 3D unit-quaternion can be decomposed into two parts: the twist-and-swing
components, which are valuable for ensuring that angular limits are enforced.

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 213

We start with a unit-quaternion rotation shown in Equation (5).

q= (quHva‘Iyyqz): (5)

where q is the vector component, q., ¢., ¢, and ¢, the scalar component. We can
calculate a quaternion from an axis-angle using Equation 6.

= C = COS Q
qu = Cay> = 2

qz = Sy = U, sin

q. = S, = U, sin

qy = 8, = Uy sin (

where ¥ is a unit-vector representing the axis of rotation, and 6 is the angle of

rotation.
Hence, we can say that because the twist is only around the z-axis, we can deduce
that the zy-axis components will be zero and will give us Equation (7):

Qewist = Qo = (Czy 0705 SZ) (7)

Furthermore, we can also deduce that the swing z-axis component will be zero in
the resulting quaternion, as shown in Equation (8):

Qswing= . = (szu Sz, Sy, 0)7 (8)

where ¢ and s represent the scalar cos and sin component of the half angles (i.e.,
see Equation (6)).
A unit-quaternion must obey Equation (9):

@ +ae+q+q =1 (9)

Hence, from Equation (7) and Equation (8), we can derive Equation (10):

214 The Journal of Graphics Tools

c+s =1
(10)
ciy—‘,—si—&—si =1.

Subsequently, if we multiply the individual twist-and-swing quaternions together,
we can reconstruct the original quaternion as shown in Equation (11).

Quyz = Yzydz
= (CIy,SI,Sy,O)(CZ,O,O,SZ) (11)

= ((czCay), (C280 4 528y), (Ca8y — 8252), (82Cay))-

Hence, from Equation (7) and knowing the vector sum of the two nonzero
components from Equation (11) sums up to one, we can derive c,,, as shown in
Equation (12):

2 2
Qiwistz = Qo T A

= (Czcmy)z + (Szcmy)2

=c2,(c2+52) (knowing, cos” +sin® = 1)

_ 2
= Cays -

Therefore, we have Equation (13):

Cay = V@2 + 2. (13)

We can multiply Equation (11) by the inverse of Equation (13) to remove
the quaternion swing component and leave the quaternion twist part, shown in
Equation (14):

Qiwistz = (=
= (CZ7 07 O, SZ)

= ((c22y),0,0, (5:0y)) (14)

Ty

1

- w70707 z ——.
(g q-) e

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 215

We extract the swing component by multiplying the quaternion by the inverted
(conjugated) twist quaternion, shown in Equation (15):

Qswingzy — quzq:wi:;t
(s @ 001 02) (00,0, 0, —.) ———
wy Xy 1Yy z wHy)) z \/m
(15)
= (Cw’yu Say Sy, 0)
= ((Qi + qz)) (Qwa - Qsz)) (unQZ + QIQy) 70) #
Vi, + ¢z
Hence, Equation (14) and Equation (15) sum up the algebraic proof.
A.2. Joint Types
The equations for a CCD revolute and prismatic joint are shown in Figure 24.
Target
Current & P,
XTargét
(@) c d
link P, urrent
P, B
P P- P, P-P link1
cos(0)=—S ¢ ¢t "¢ d=@ -B)- (pe_PC)
HPe_ Pc” H Pt_ Pc” PC B t ¢ ||Pe'PC||

= Pe' Pc ~ Pt' Pc
link0 I P.- Pl [P P]

Revolute Joint Prismatic Joint

Figure 24. The basic equations for both a prismatric and revolute joint for CCD
IK system.

216 The Journal of Graphics Tools

References

[Aristidou and Lasenby 11] Andreas Aristidou and Joan Lasenby. “FABRIK: A
Fast, Iterative Solver for the Inverse Kinematics Problem.” Graphical Models
73:5 (2011), 243-260.

[Canutescu and Roland 03] Adrian A Canutescu and Jr L Dunbrack Roland. “Cyclic
Coordinate Descent: A Robotics Algorithm for Protein Loop Closure.” Protein
Science 12:5 (2003), 963-972.

[Denavit and Hartenberg 55] J Denavit and R. S. Hartenberg. “A Kinematic
Notation for Lower-Pair Mechanisms Based on Matrices.” Journal of Applied
Mechanics 22:June (1955), 215-221.

[Dowsland 95] K.A. Dowsland. Simulated Annealing. In Modern Heuristic
Techniques for Combinatorial Problems. New York: McGraw-Hill, 1995.

[Fédor 03] M Fédor. “Application of Inverse Kinematics for Skeleton Manipulation
in Real-Time.” Proc. 19th Spring Conference on Computer Graphics (2003),
203-212.

[Kenwright 12a] Ben Kenwright. “A Beginners Guide to Dual-Quaternions: What
They Are, How They Work, and How to Use Them for 3D Character
Hierarchies.” International Conference on Computer Graphics, Visualization
and Computer Vision 20:June (2012), 1-13.

[Kenwright 12b] Ben Kenwright. “Real-Time Character Inverse Kinematics Using
the Gauss-Seidel Iterative Approximation Method.” International Conference
on Creative Content Technologies 4:July (2012), 63—68.

[Kulpa and Multon 05] Richard Kulpa and Franck Multon. “Fast Inverse Kinematics
and Kinetics Solver for Human-like Figures.” IEEE Humanoid Robots December
(2005), 38-43.

[Lander 98] J Lander. “Making Kine More Flexible.” Game Developer Magazine
November (1998), 15-22.

[Mahmudi and Kallmann 11] Mentar Mahmudi and Marcelo Kallmann. “Feature-
Based Locomotion with Inverse Branch Kinematics.” Motion in Games (2011),
39-50.

[Mukundan 09] R. Mukundan. “A Robust Inverse Kinematics Algorithm for
Animating a Joint Chain.” International Journal of Computer Applications in
Technology 34:4 (2009), 303.

[Ren et al. 10] JingLi Ren, ZhubBin Zheng, and ZhongMing Jiao. “Simulation
of Virtual Human Running Based on Inverse Kinematics.” International
Conference on FEducational Technology and Computer (ICETC) 2 (2010),
360-363.

Kenwright: Inverse Kinematics — Cyclic Coordinate Descent 217

[Shin et al. 01] H.J. Shin, Jehee Lee, S.Y. Shin, and Michael Gleicher. “Computer
Puppetry: An Importance-Based Approach.” ACM Transactions on Graphics
(TOG), 20:2 (2001), 67-94.

[Shoemake 85] K Shoemake. “Animating Rotation with Quaternion Curves.” Proc.
ACM SIGGRAPH’85 Computer Graphics, 19:3 (1985), 245-254.

[Wang and Chen 91] Tommy Li-Chun Wang and Chih Cheng Chen. A Combined
Optimization Method for Solving the Inverse Kinematics Problems of
Mechanical Manipulators. IEEE Robotics and Automation 7:4 (1991), 489-499.

[Van Welbergen and Ruttkay 09] Herwin Van Welbergen and Zsofia M. Ruttkay.
Real-Time Animation Using a Mix of Physical Simulation and Kinematics.
Journal of Graphics, GPU, and Game Tools 14:4 (2009), 1-20.

[Welman 93] Chris Welman. “Inverse Kinematics and Geometric Constraints for
Articulated Figure Manipulation.” PhD thesis, Master’s Dissertation, Simon
Fraser University, Department of Computer Science, 1993.

[William 88] W Hagger William. Applied Numerical Linear Algebra. Englewood
Cliffs, NJ: Prentice Hall, 1988.

‘Web Information:

http://www.ncl.ac.uk/computing/people/student /b.kenwright

Ben Kenwright, School of Computing Science, Newcastle University, Claremont
Tower, Claremont Road, Newcastle-Upon-Tyne, NE17RU, UK (b.kenwright@
ncl.ac.uk)

Received August 21, 2010; accepted in revised form June 28, 2013.

