
Online Technical Article, January 2014
The Path To Working Smarter Not Harder

The Code Diet
Benjamin Kenwright1*

Abstract
Writing beautifully clear and efficient code is an art. Learning and developing skills and tricks to handle unforseen situations
to get a ‘feel’ for the code and be able to identify and fix problems in a moments notice does not happen overnight. With
software development experience really does count. This article introduces the reader to numerous engineering insights
into writing better code. Better in the context of cleaner, more readable, robust, and computationally efficient. Analogous to
the 20:80 principle. In practice, you can spend 20% of your time writing code, while the other 80% is editing and refining
your code to be better. You have to work hard to get coding muscles. Lazy coding ultimately leads to unhealthy, inflexible,
overweight code.

Keywords
Readable — Efficient — Robust

1 Edinburgh Napier University, School of Computer Science, United Kingdom: b.kenwright@napier.ac.uk

Contents

Introduction 1

1 The Path To Working Smarter Not Harder 1

2 Reliable Optimised Code 1

3 Experience 1
3.1 Comments . 2

4 Logic 2
4.1 Common Sense . 2
4.2 Unpredictable . 2
4.3 Impossible . 2
4.4 Recovering . 2
4.5 Double Checking . 2

Two Different Methods

4.6 Security . 2
4.7 Different Set of Eyes . 3

5 Slow Same As The Fast 3
5.1 How Much Faster Before We Rewright The Code? . . 3
5.2 Lean and Mean . 3
5.3 Loops (For, While) . 3

6 High-Level vs Low-Level 3

7 Fast Isn’t Always Faster 3
7.1 Tortoise and the Hare . 3
7.2 C/C++/C#/Java . 4

Pre and Post Incremental

7.3 Platform Specific . 4
7.4 Don’t Assume - Prove It! 4
7.5 Practical Test Cases . 4

8 Reliable or Fast (Compromises) 4

9 Compiler 4

10 Sequential Thinking 4
10.1Bigger Picture (Small Pieces) 4

10.2Does Size Matter? . 4
10.3Naming Convention . 4

Hungarian Notation

10.4Colour Coding and Development Environments 5
10.5External Data . 5
10.6Cache Hit . 5
10.7Asserts . 5

11 Source Control 5

Acknowledgments 5

Introduction
There Is No Such Thing As Perfect Code We have all
written what we think is beautiful code. Some might even say
sexy, elegant and the undoubtedly the best. What made this
piece of code so great? Was it the complexity? Robustness?
Readability? Size? Have you ever had to debug someone
elses code? When was the last time you saw a piece of code
you thought was amazing? Have you ever not been able to fix
or track down a bug in a large piece of code? We address and
discuss these questions in this article. We try and open the
readers eyes to more novel and flexible techniques for writing
code. To think of sustainability and flexibility. To encourage
the reader to ask ‘what if’ during the development of their
code.

1. The Path To Working Smarter Not
Harder

Be Open Minded The first step towards growing and im-
proving is to be open minded. To accept new ideas and think
outside the box. Tunnel vision (i.e., thinking in one direction
without looking around or considering anything else) can keep
you stuck in bad habbits. Has anyone ever given you some
advice while you shunt it away since you think your method

The Code Diet — 2/5

is better without reason or cause? Justification of a doing
something one way and not another with ‘just because’ is not
a reason enough.

Classification How do we classificy which piece of code
is the best? For example, if two different people write two
different pieces of code that perform the same operation which
is the best?

2. Reliable Optimised Code

What do we mean by robust, optimized, and reliable? There
is not such thing as perfect code. Human errors are inevitable.
Furthermore, software evolves. What was considered as
adaquatly code today might not be considered sufficient for
tomorrow. New algorithms and hardware are always pushing
the limits of what is possible. Nevertheless, when we say
robust it means that it can handle a wide variety of unforseen
circumstances. For example, when your algorithm uses ex-
ternal data, if that data is not as expected (e.g., corrupted),
then your algorithm can identify this and cope without crash-
ing to the ground. While optimized code, is code that runs
sufficiently fast enought to meet the the systems desires.

3. Experience

A thousand mistakes is a thousand lessons A person
who has never made a mistake has never learned anything
new. Never be afraid to try new approaches. To go against
tradition. You learn and grow as you experiment and through
your failures. Each time you fix a bug or optimize an algorithm
you expand your knowledge. For example, when you debug
a huge piece of software for an error, it can take enourmous
inginuity to track the problem down. You can be limited
by what debugging facilities are available, such as prints or
graphical output. How can you get more experience? Learning
from those around you. Reading online articles and forums
for advice and tips. Stretching your knowledge by taking on
projects outside of your interest and scope to widen your eyes
to new ideas. For example, you do not necessarily know if you
like or dislike something until you have tried it. Analagous to
if something can help and make your life easier better until
you give it a try.

3.1 Comments
No One Else Will See My Code Typically, young develop-
ers get into their heads that as long as they understand their
code at that moment they do not need to comment it. That the
algorithm to them is easy to understand. That they do not have
time to comment it. That they will come back and comment it
later.

4. Logic

4.1 Common Sense
Not magical Software algorithms should now work using
magic or random luck. Always take a straightforward view
to programming. Basically, as with mathematics, software
follows a set of rules that you can break down into smaller easy
to digest pieces. Each piece should be clear to understand.
When you are looking at values ask yourself if the values
seem reasonable (e.g., NAN - not a number, square root of
a negative number) and what could have caused this. When
developing your programs you need to take a critical thinking
approach. Always look for ways that it could break and ways
that it could be made better. Follow your implementation
through sequentially and ask if the values or logic is following
what you expected. Do random unforseens numbers pop up?
Is there an automatic way of checking that your algorithm is
working? Can you pass in a range of pre-set values to check
that you get the correct output to show that your algorithm
works? Similary, pass in a set of invalid values to see what
happens and if your algorithm can recover gracefully.

4.2 Unpredictable
Sometimes? Have you ever run a piece of code that pro-
duces a different output each time? Software is not random.
You should be able to predict what your algorithm will do.
Even if you have random elements within your code, you
should be able to determine the range of output based upon
the range on inputs. For example, if you have not initialized all
your variables in non-managed languages, such as C and C++,
your program will possess random numerical errors. Imagine
you did not initialize a loop counter. Each time you ran the
code it would perform a different number of iterations. The
random loop could cause random stalls or buffer overflows.

4.3 Impossible
Even the word ’imposssible’ contains the word ’possible’
Nothing is impossible. New inovative interesting and valuable
algorithms are constantly being developed. What today you
might thought impossible may be common and unnoteworthy
tomorrow. For example, since computer speeds are growing
exponentially faster, algorithms from decades ago are now
becoming usable and viable options in real-time environments.
Furthermore, due to the trend in highly parallel systems you
need to think differently in some cases to take advantage of
the full set of resources in your hand and accomplish the
impossible.

4.4 Recovering
What to do when things go wrong? When your program
does identify an error what should you make your code do?
There are numerous chains of thought on this question. Devel-
opers usually like to be warned and hit with the line number
and what caused the problem. While users do not want to
be troubled and want to be able to continue working. Hence,
it is usually necessary to put in a dual set of recovery and
diagnostic code. One set warns and logs the problem, possibly
causing an assert in the debugger, while the setting piece of

The Code Diet — 3/5

code resets the problem to some stable value so the program
can continue running. This means you need to be able to do
’release’ and ’debug’ builds. Also, don’t fall into the trap of
always working in debug mode and never testing or updating
the seperate set of release code. Furthermore, always be aware
that your debug code can cause issues. For example, cause a
slow-down or modify the output.

4.5 Double Checking
Everybody checks everybody else This might seem a bit
much. But having multiple ’redundant’ versions of code
checking one another means that your implementation will
be less prone to errors. While it might run mega slow in di-
agnoistic mode it will however identify errors immediately
instead of when the program goes live and out into the open
world. For example, an algorithmically simplier and slower
implementation testing a highly optimized assembly code
version.

4.5.1 Two Different Methods
There are two ways to skin a cat Typically, there can be
multiple ways to accomplish a task. Different algorithms
can offer different features, for example, less bandwidth, less
memory footprint, more computational speed, numerically
less accurate. Understanding and knowing which tool to fit
the job is important. As the old saying goes, if all you have
is a hammer, every problem looks like a nail. Similary, if
you only know one algorithm, each time you come across a
problem, you try and adapt and fit that particular algorithm to
the task. For example, if you are only familiar with the slower
exponential bubble sort algorithm, each time you need to sort
a set of numbers, it is your first choice. Nevertheless, if the
numbers are all ready nearly sorted, it is miles more efficient
to use a merge sort and offers all the same features but is vastly
computationally quicker when the values are nearly sorted.
This is useful where you can be sorting the data constantly
and only minor changes happen between updates. Be aware
of the task and the tools.

4.6 Security
Vulnurabilty Software flaws open the door to security issues.
For example, assuming a string buffer will never go past a
maximum length and not incorporating any checks. Then
some scrupulous individual could identify this flaw and pass
in data that would go outside the buffer range causing memory
corruption. Overwritting code on the fly to perform unintented
tasks.

4.7 Different Set of Eyes
Two Heads Are better than one Sometimes just explaining
the problem to another person helps you clarify and solve the
problem yourself. Alternatively, bouncing ideas of a person
with a different background helps give you a view on the
subject that you never even considered.

5. Slow Same As The Fast
Redundancy When you are developing a newer inovative
and untested algorithm, you might want to run it in parallel
with an older proven possibly slower and bulkier approach.
The method allows you to guarantee that the algorithm is
producing the same numerical results, furthermore it gives
you a benchmarch on how much faster your new algorithm is
and how less memory or bandwith it is using.

5.1 How Much Faster Before We Rewright The Code?
Profiling If you are in doubt about where performance bot-
tlnecks are, then run a profiler. You can pin-point specific
areas of your code that are causing slow-downs. Furthermore,
if you try out a new piece of code, be sure it is worth the
extra effort. For example, it is not worth lots of extra time
and effort rewriting a small section of code in assembly using
some fancy algorithm if the problem is a high level one (i.e.,
badly designed system). You might need to take a different
perspective and approach the problem from an alternative
direction (i.e., smarter and less brute force).

5.2 Lean and Mean
Feature Creep Over time programs can be extended and
engineered to solve multiple tasks. For example, flags and
special cases can be incorporated into the algorithm. However,
the time will come when you have to cut the fat. When you
have to decide what is needed for what and split the overgrown
program into smaller task specific modules rather than a single
interweaved beast that is inflexible and bloated.

5.3 Loops (For, While)
Are Loops Really Bad? Loops allows us to develop small
compact pieces of code. The small algorithm can typically fit
in the cache and execute quickly. Of course, loops, especially
nested loops can time consuming. If you can avoid loops then
do.

Macros (Loop Unrolling) For programming languages, such
as C and C++, that allow macros, you can have loops unrolled
automatically at compile time. Of course, loop unrolling has
problems. The compiled binary will be larger and can cause
a cache hit if the algorithm cannot fit into memory. Never-
theless, for small pieces of code macros enable you to force
inline optimizations.

Recursion Functions that call themselves are an alternative
to loops. However, each time a function calls another function
the current state registers and return address are pushed onto
the stack. If you are not careful (e.g., infinitly call a function
itself) you will hit a stack overflow assert. That is you will
run out of stack memory allocated when the program starts.
Recursive functions can be compact and beautiful. But the
same can be said about loops. Recursion or loops depends
upon the task at hand and in the majority of cases algorithms
can be implemented both with loops and recursive methods.

The Code Diet — 4/5

The Big ’O’ How can we measure the performance of our
code? Classifly and compare two different algorithsm that
perform the same operation? In computer science, the big
’O’ notation describes the performance or complexity of an
algorithm. Primarily, the big ’O’ focuses on describing the
worst-case scenario. For example, the execution time required
or the space used (i.e., memory or disk space) by an algorithm
in question.

Avoiding Conditional Statements An algorithm that is se-
quencial and does not require any conditional logic is easy
to predict. The CPU predictive cache logic and pre-load and
number crunch a small chunch of data. However, it can de-
pend on memory accesses, floating point calculations (e.g.,
sine or squareroot operations), and bandwidth.

6. High-Level vs Low-Level
Do you really need to go down to assembly level opti-
mization? Certain hard-core developers on occasion feel
the need to sqeeze every single cycle out of a system. For
example, those developing on older hardware, such as Sony’s
Playstation 2 or GPS hand held devices, where understand-
ing processor instructions can dramatically effect the overall
performance. However, in the majority of cases, you will
find that a smarter algorithm does the job. As they say, there
it is no use beating a dead horse. If you are working with
an O(n2) algorithm (i.e., exponential growth efficiency algo-
rithm) then it does not matter how fast the execution time
through optimisation. While if you replace the exponentially
slow algorithm with a log or linear approach will be dra-
matically faster without needed to jump into any assembly.
Furthermore, the solution with be platform invariant and can
be ported and modified without much pain.

7. Fast Isn’t Always Faster
When you say fast what do you mean? When you say
fast, do you mean computationally efficient or algorithmically
uncomplicated? Do you make any assumptions, such as float-
ing point precision? Is your code flexible and can it grow as
the data grows?

7.1 Tortoise and the Hare
If Only The Hare Hadn’t Stopped For A Nap Are you aim-
ing for a long term solution or a temporary ’hack’? Will
your program be use in navigating or controlling life support
equipment on planes or in hospitals? Or will it be number
crunching some approximate visual lighting values for a 3D
video game?

7.2 C/C++/C#/Java
What Does Your Language Bring To The Table? Man-
aged languages are popular and provide an assortment of
tested libraries. They are platform independent and cut you
free from worrying about memory and low-level issues. While

hard-core programming languages, such as C and C++, allow
you total control. You can mix in assembly language, ma-
nipulate the raw memory contents, or call specific hardware
instructions. Again it depends upon the task at hand. For real-
time environments, such as games and graphical solutions, C
and C++ are the prefered solution, while for applications and
interfaces managed languages are easier.

7.2.1 Pre and Post Incremental
++i or i++ Why does it matter if we use pre or post incre-
mental operations? Why is post incremental the common and
default method we are used to using? For languages that allow
operator overloading (e.g., C++ and C#) pre and post incre-
mental operations can produce code that is computationally
faster and more robust. While for uncomplicated values such
as integers and floats the pre and post incremental operations
don’t matter. However, for custom classes it can result in the
creation, copying, and destruction of classes each time the
post incremental operation is used.

7.3 Platform Specific
Big Endian or Little Endian Which way do you eat your
egg? If you are unfamililar with Gulliver’s Travels story about
Lilliput. Where two great nations are at constant war about
which side of an egg you should eat from. Similarly, CPU
architecture is primarily split into two main types, big-endian
and little-endian, depending upon your byte ordering. The
artictures can then be highly parallel (e.g., graphics processor
unit), game orientated (e.g., xbox, ps4), higher level managed
language such as C# and Java. Understanding where your
code will be used can determine how you write it. How you
structure array, how you initialized variables, and so on.

7.4 Don’t Assume - Prove It!
That Won’t Ever Happen The best rule of practice for as-
sumption is to use ’asserts’. If you are so confident that it will
never happen, then place an assert in the code to confirm that
it. This has the added advantage of triggering and informing
you if it does happen. Furthermore, if another person looks at
your code they can see from the assert that you have specified
that this should never occur and if it does then something has
gone haywire.

7.5 Practical Test Cases
Making Your Program Jump Through Hoops Do you just
write your algorithm, run it once, then assume it’s working
perfectly without flaws? If possible try break your algorithm.
Run it with a wide set of randomly generated variables and
see what happens. Possibly you didn’t initialized all your
variables or you made some assumptions while you were
developing the code. Running your program through some
test cases will ensure it doesn’t come back an bit you at a
later date. The test code will also help you identify bugs and
problems if you modify the code at a later date to make it
more faster more efficient and juicy.

The Code Diet — 5/5

8. Reliable or Fast (Compromises)
The Glass Shoe When the entire village of eligable women
were trying on Cinderelas glass shoe, none of them fitted.
Imagine it. No one has feet either as small or as big as Cin-
derela. With software you have to decide. For example, fast or
accurate, big or small memory footprint, portable or platform-
specific. Rarely, no solution fits every situation.

9. Compiler
The Compiler Is Trying To Help You Compile warnings
are there for a reason. The compiler is informing you that
the solution you have chosen can cause slowdowns or numer-
ical problems. Try and avoid having hundreds or thousands
of warnings fly through the output window each time you
compile. Typically, if you truly understand, and I mean truly
understand the warning, you can include a define in the pro-
gram to disable it. But be warned. Don’t go disabling a
warning nilly-willy just because. Be sure you understand the
consequences.

10. Sequential Thinking
Single Thought At A Single Moment Our mind cannot
run in parallel. We systematically switch between tasks and
problems. We cannot work on multiple problems at the same
time. As the saying goes, if you try to chase two rabbits both
rabbits will escape.

10.1 Bigger Picture (Small Pieces)
Building Blocks Methods and functions allow us to create
reusable parts. Re-inventing the wheel all the time can be
error prone and inefficient.

10.2 Does Size Matter?
Size Of What? Are long variable names clearer than shorter
ones? Does a small algorithm run faster than a larger algo-
rithm? What is your justification for your answer?

10.3 Naming Convention
Single Letter Variables Do you name your variables ’a’,
’b’, ’c’, ’i’, ’j’, and so on. Why? When a variable name can
help make your algorithm more readable.

10.3.1 Hungarian Notation
Overkill While the full hungarian notation might be overkill,
a simple common sense naming convention, such as functions
and classes starting with captial letters, and variables always
with a starting lower case letter are common and form a set of
consistent rules that enable people to easily see what an item
is without jumping around in the development environment.

10.4 Colour Coding and Development Environments
Why Not? While you might not want to use a full develop-
ment environments, such as Microsofts Visual Studio, you
can still take advantage of open source programs, such as

Notepad++, which provide you with colour coding. Make
your life easier if you can.

10.5 External Data
Input From The Outside World A program needs input.
Without some sort of input, either from data files or from user
interaction, the program would be useless. Verifying that the
external input data is valid and correct is important. Since bad
data means unforseen results. Any time a function takes in
values and returns values you should always check to ensure
the paramater values are within specified tolerance ranges
(e.g., using asserts).

10.6 Cache Hit
The cache is there to prevent performance hits from memory
retrival. Small algorithms with a mimumum memory footprint
that work with coherent sequential data from memory are ideal
for the cache.

10.7 Asserts
A Must Novice and beginner programmers seems to avoid
asserts. They cannot comprehend the true value of them. They
allow you to define a set of rules and checks for your code both
for yourself and other developers. A good place to always
insert asserts is at the beginning and end of functions to ensure
incoming and outgoing values are within predicted predifined
limits.

11. Source Control
CVS, SVN, GIT If you have ever collaborated with multi-
ple people on a project then you should have come across
source control. Source control enables you to record and track
changes. Some people refer to source control as a ’blame-tool’
since it allows you to identify who changed what, when, and
why.

Acknowledgments
I would like to thank all the reviewers for taking time out
of their busy schedules to provide valuable and constructive
feedback to make this article more concise, informative, and
correct.

Recommended Reading
Code Complete: A Practical Handbook of Software Construc-
tion, Steve McConnell, ISBN: 978-0735619678
Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin, ISBN: 978-0132350884

