Algorithmic and Architectural Gaming Design:
Implementation and Development
ISBN 978-1-4666-1634-9
p15¢-20z

Chapter 8

Practical Introduction to
Rigid Body Linear
Complementary Problem
(LCP) Constraint Solvers

Ben Kenwright
Newcastle University, UK
b.kenwright@ncl.ac.uk

Graham Morgan
Newcastle University, UK
graham.morgan@ncl.ac.uk

ABSTRACT

This chapter introduces Linear Complementary Pral{leCP) Solvers as a method for implementing
real-time physics for games. We explain princiglad algorithms with practical examples and
reasoning. When first investigating and writingoéer, one can easily become overwhelmed by the
number of different methods and lack of implemeatatetails, so this chapter will demonstrate the
various methods from a practical point of view eatthan a theoretical one; using code sampleseaid r
test cases to help understanding.

INTRODUCTION

With the ever-increasing visual realism in todagoenputer-generated scenes, it should come as ik sho
that people also expect the scene to move andmedess realistically. With the computational powe
available today, the ability to run physically aate real-time simulations is required to hold aypts
attention.

Simulating scenes, using physics-based methodspisrtant because it enables us to produce
environments that respond to unpredictable actimussimulate situations that are indistinguishéiolen

real life, e.g. buildings collapsing. Howeversitvery difficult to simulate reliably, large nuntbaf
objects and complex articulated structures as showigure 1.

Information Science
DOI: 10.4018/978-1-4666-1634-9.ch008

Copyright © 2012, 1GI Global. Copying or distribogj in print or electronic forms without written peission of IGI Global is prohibited.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

Figure 1. Simulation screenshots demonstrate statalcking (left), articulated joints for characser
(middle) and chains of objects (right).

Writing a flexible, scalable rigid body simulat@ra challenging task because you need strong
background knowledge in programming and Newtoniachmanics. While there are several approaches
(i.e. penalty methods, impulse methods), solvefer ofumerous advantages, such as requiring less use
tuning and the ability to handle highly coupled fagurations (e.g. large stacks or chains).

The reader, after being introduced to how solveerate and how they are constructed, is introdteed
dependent techniques; such as sparse matricesvidirg@we try and explain everything from the bottom
up, it is still required that the reader is at tdamiliar with basic Newton’s laws and calculushgiques.
After completing this chapter, the reader shoulkha basic understanding of what a solver is, low t
implement one, and how to use it.

BACKGROUND

Rigid body dynamics

Rigid body dynamics is a well understood and doauetefield, and as such, will not be covered here.
For background information, we recommend readiraydB, 1999; David H. Eberly, 2004; Hecker,

1998), which gives details on unconstrained dynaraicd concepts such as body mass, acceleration,
velocity and the equations of motion, which we tihseughout this chapter.

While we introduce the reader to writing a pradtldaP solver, there are also commercial and open
source engines, which can be taken advantage @fyarwould recommend them for the purposes of
background knowledge. Some well-known LCP simutagagines are:

* Open Dynamics Engine (ODE), (Smith, 2004)

* PhysX (NVIDIA, 2011)

* Newton Game Dynamics (Jerez & Suero, 2003)
» Havok (Havok, 1998)

» Crisis Physics Engine (Vondrak, 2006).

Block matrix methods

The equations that make up our dynamic system amstr@ints can be large, cumbersome, error-prone
and difficult to manage, and to help alleviate fhvigsblem, we represent them in matrix form. Thigegi

us a more manageable high-level view of the systedhits components, which is more intuitive to work
with.

In our simulator, a large majority of the compudattcost is in calculating an inverse matrix for our
solution. As with real numbers, when you have ‘a¥gdu can solve for ‘X’ by dividing both sides by’

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

to get ‘x=b/a’, which is acceptable, as long adsaiot zero. Similarly, when working with matricege
formulate the equation ‘AX=B’, and divide both séday ‘A’ to get ‘X=B/A’. But instead of dividing

both sides by ‘A’, we calculate the inverse of Ae. A™) and multiply both sides, to achieve the same
result.

This chapter uses numerical methods to calculaténtrerse of the matrix, which is central to achig\a
usable solver. However, on occasions, we are unaldalculate the inverse, i.e. we gefirrgular matrix,
similar to a divide by zero with real numbers. Wihieis occurs, usually some ill-conditioned
configuration has developed or perhaps some nuatgnioblem has occurred, which we detect as a
singular matrix (i.e. determinant is zero) and weedmine why it has arisen so that we can fix @ an
prevent it happening again.

Lagrange Multiplier Formulation

We have the unconstrained dynamic equations ofomdtom classical mechanics, which describes how
the rigid bodies move, and a set of constraint itimmd — which describe how they cannot move. We
then combine these two equations and solve theawrk by using a powerful technique of multivariable
calculus, known as ‘Lagrange multipliers’.

We create the equations for our system using Nesvtmtond law ‘f = ma’, in combination with
constraint equations which we form through diffeiaion and substitution to establish a combined
problem, which is solved using Lagrange’s multiptieethods.

Equations of Motion

Each unconstrained body has Biggrees of FreedofDOF), three for translation and three rotatioor. F
a group of rigid bodies (m), the total DOFs is @imce constraints restrict the relative motion,tttel
number of DOFs of a group of rigid bodies, with stpaints, is less than 6m. The rigid body dynaritics
collaboration with the constraint configurationsnfiotheEquations of MotioEOM), that describe how
the group of rigid bodies will move as time changes

We can categorise the EOM into two typekximalandReducedoordinates.

Maximal coordinatesise Cartesian space, so each body has 6m stitbleayand requires 6m-n
constraint equations (where n represents the nuaflmemstraints). These constraistglicitly remove
extraneous DOF through their formulation. For fartreading on explicit constraint methods see
(Shabana, 1994), and further details on maximatdioate methods are available in (Baraff, 1999;iDav
H. Eberly, 2004; Hecker, 1998).

Reduced coordinatasse arimplicit incorporation of the constraints to formulate ¢ogiations of motion.
The system uses n state variables to represematimis DOF, so for example, if we have a singleab
which can only rotate around the 'y’ axis (no tiatisn or x-z rotation), then the system state ardgds
a single state variable to represent the systemtlie object’s angle). It has a major drawbaclerehy
for each unique configuration we need to derivédiyd a set of equations for that particular
arrangement.

Both MaximalandReducedoordinate methods are able to run in ‘O(n)’ tildeaximal coordinates are
more popular because of their modularity and dttfdgwardness to understand and implement.
Although maximal coordinates operate in Cartesfats, we still sometimes need to use awkward
conversions, to convert between constraint ande€iar space. Maximal coordinates can drift due to

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

numerical errors and integration inaccuraciesduition they need a minimum of 6m state variabtes t

represent the system, so optimised methods ndsglused to reduce memory and bandwidth impacts
(sparse matrices). Due to the modular flexible ratid maximal coordinates, we use this methodis th
chapter, so we can formulate constraints oncepaadhem again and again for various configurations

Simulation Approaches
Three main types of constraint methods eRsnalty methodsmpulse methodandGlobal methods

Penalty methodésprings) — are the easiest technique for forrmgdatonstraints, whereby the violated
constraint error is fed back into the system awriegy forces to correct the error. They have thiéitg to
be simple, fast and intuitive, and can be combimitld other methods to add controllability. Their
downside is that the constraints rely on error ffiee# forces, and suffer from stability issues, Whic
require small time-steps (offline) or computatidpaixpensive integration techniques to remain stabl
The reader can refer to (Ka”, Nordenstam, & Bull@d03) for a practical example of penalty methods
being used to create constraints.

Impulse methodgrelocity impulses) — use instantaneous force ghanknown as velocity impulses to
implement constraints. These velocity impulsesrepeatedly applied to each constraint, where ybreso
one constraint after the other, re-evolving thaesysto satisfy all constraint conditions, until gyestem
converges, or you reach a maximum update limitthHeurreading can be found in (Guendelman, Bridson,
& Fedkiw, 2003) which presents a realistic impubssed simulator with stacking.

Global methodganalytical methods) — which we use and apphis thapter, involve computing the
exact magnitude of force that will satisfy the doaisits at every step of the simulation. It is aatel and
requires minor parameter tuning by the user anchtaintain stability for relatively large integratio
steps. It works, fundamentally, by constructingnadr system of the form.

SOLVER (LCP)

The Linear Complementarily Problem (LCP) is a spiekind of problem that aims to find a solutioreto
set of equations, subject to constraint limits. Type of LCP we focus on in this chapter is the-box
constrained LCP, which aims to find a solutionhe torm ‘y = Ax+b’, subject-to limits on 'y’

where y= A% b
subjectto Y0 - ¥ X 1)

ySO - X=){jpper
y=0 = Xower < X<)ijpper

We can broadly classify LCP solvers into two methgubs,iterative methods ang@ivoting methods.

Pivotingmethods use recursion; where the solution to tbelpm depends on solutions to smaller
instances of the same problem, which can be satvadinite number of steps. While pivoting methods
can be fast, it is our experience that for a langmber of constraints, they can produce erronegaidts
for perfectly valid systems due to floating pointoes. Further reading and examples of pivotinghods
are Lemke’s algorithm used in (David H. Eberly, 20@nd Dantzig's algorithm, used in (Baraff, 1994)

Iterative methods alternatively do not terminate but coneang a solution finitely, where convergence
depends on a number of factors such as the isthaling value. In addition, because iterative rogsh
move closer to the solution with every updatehéytwere interrupted early, the current resultlman

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

good enough for the simulation to continue. Furtie, we can take advantage of the starting gueabs a
coherency between frame updates to accelerate igamae, by feeding the previous frame’s solution to
the next. This property makes them ideal for remétapplications, where we can break out at varied
times, trading accuracy for speed. Finally, iteatinethods in practice are able to find acceptadselts

in ill-conditioned or singular configurations; dtgecontacts or overly constrained systems thatathe
simulation to continue and recover.

Further reading about LCP methods for solving aafolind in (Cottle, Pang, & Stone, 1992).

To restate, we use iterative methods because;
e The stopping criteria can be adjusted to traderacguor performance.
» In practice, they are more stable and reliable.
* They are simple to implement compared to otherctimethods.
» There is a greater potential for optimisation (exjpig matrix sparsity for speedups).

Two popular iterative methods for solviagstems of linear equatioase Gauss-Seidehnd the Jacobi
method which can be modified to handle equality conistisafor our complementary problems, such as,
contacts. For this chapter, we use a modifiéduss-Seidehlgorithm, called theProjected Gauss-

Seidel, which offers a simple and intuitive implementatiwith good convergence rates. An in-depth
explanation on how systems of linear and compleamgrgquations are solved can be obtained by reading
(Hagger, 1988), (Cottle et al., 1992) and (Erlet28@4), also for a more detailed explanation of the
Gauss-Seidel and its differences to projected G8egiel, see (Catto & Park, 2005).

The Gauss-Seidetquation is shown below, followed by its implenaiun in code.

)g(k+i) :a%(b _z)§k+l) _ i *J (2)

jea+1

where the subscript i and j indicates the colunthramw of the matrix elements from our linear equrati
Ax=h. It works by starting from some initial val¢eg. 0), then iteratively updating the answer adpdly
using the result from the previous step to converga solution. In the equation above, we hdwasx
our current result, and® as the next.

The convergence on an acceptable answer dependshgsize and complexity of the configuration,
where it can take anywhere from two or three iterstto hundreds, depending on the topology and
initial starting value. For example, highly couplazhfigurations such as stacks of objects or ldvajrs
take longer to converge than less densely coupied.o

We add an extra step to our vi@huss-Seidahethod to incorporate boundary conditions andreefthe
complementary constraints with an additional pribjecstep:

X; = max(min(x , "), x ") (©)

Stop Condition

The sample code uses a fixed iteration count, lohieak can be added to determine if the solution is
within a certain tolerance and provide an earhakoait. We can calculate this value using the eqoati
below:

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

lb- A% ||

I]]

Acceleration or Velocity Level

£ (4)

We can broadly classify LCP solvers into two majuess,acceleration-baseBaraff, 1989; 1994;
Lotstedt, 1984) ovelocity-basedAnitescu & Potra, 1996; Stewart & Trinkle, 1996}here the solver is
classified according to the level it operates osdive its constraints. In the next few sections review
both the acceleration and velocity level solvetdliming their similarities and differences, buivards
the end of this chapter, we will focus welocity-basedolvers due to their added simplicity and

practicality.

We give a brief comparison of both methods anderetheir advantages and disadvantages. To begin
with, we demonstrate the two main sets of equatamusthe steps for formulating constraints at the

various levels to illustrate their differences.

Velocity Acceleratiol
IM™ITA+Jg+ IME 2 0 IM™ITA+Jg+ IM'E, 2 0
using using
qn+1 = qn + M_l(Fext + Fc)At qml = M o (Fext + Fc)
F=J"A F.=J"1
The constraint formulation steps are as follows:
Velocity Acceleratiol

Create positional constraint C.
Differentiate C with respect to time to obtain

the velocity constrairg .
3. Isolate and extract the Jacobian fiém

N e

N e

w

Create positional constraint C.
Differentiate C with respect to time to obtain

the velocity constrair@ .
Isolate and extract the Jacobian from

Solve for the derivative of the Jacobial (
w.r.t. time.

From the constraint formulation steps above, theee may notice that the initial steps are verylam
but the acceleration level requires additional workalculate the Jacobian derivative. The velocity
approach is basically a subset of the accelerégigai, where it moves the acceleration problem thio
LCP integration step in order to obtain a discptéblem, having velocities as unknowns rather than

accelerations.

The velocity-based method has the slight advarmégely having to compute the first differentiar fine
constraint equation due to the velocity methodneatding the Jacobian derivative to calculate the
unknowns. Earlier solvers were formulated at theekeration level, but had problems where friction

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

constraints could produce unstable systems. Liseiproblem was modified so it could be solvedat t

velocity level where this problem was solved.

(Acceleration LeveIY Velocity Level \

Step 1. Matrix version of Newton's second law, but splitithe total forces into two parts.
(f, external force and, unknown constraint forces).

St

i ~
g Mo=f o+ f. M (gAL) = .+,

| y
:p o Construct constraint equation C(q) and differentiaitwice for acceleration level,
.~ and once for velocity level.

e A
i C@=0 C(@)=0

: ?(CI)= Jg=0 C(9) = Jg=0

i C(a) =J4+Jg=0

N Y

Step 3. Using the Jacobian (J) and Lagrange multipligme are able to solve

St

Figure 2.

for the unknowns.

/
d=M*(fs1,)

=M (f,J+1")

_

q=M7(f+f) At
=M(f J+1")At

~

Y

reinsert them back into step 3.

Arranging the equation into the form ‘Ax=b’, withas the unknowns, we can us¢
4. linear methods to invert the matrix and solve Far $ystem of equations, and the

i .8 D

Al=Db

IM "1 =-Jg-J3"Mf,

IM™IT2=-Jg-J"Mf,
Al=b

D

D

2N

J

J

Basic four-step breakdown of acceleratmd velocity based methods.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

If principles of how to resolve constraints at tledocity level are understood, then the knowledginére
to implement it for the acceleration level (andeviersa). For the remainder of this chapter, wefadus
on deriving and implementing methods for the vejolgvel, and where appropriate, mention any
extraneous details that might be relevant to tlvelacation level.

CONSTRAINTS

Overview

The formulation of the equations we use for ounsator can be broken down into four easy steps as
shown in (Hecker, 1998) and reproduced in FiguMy@.introduce the steps briefly here, showing how
the solver equations fit together, to attain a fsybased simulator. Even though they may not be

completely understood initially, we reintroducerthagain with further details and applied exampkes a
we advance through the chapter.

Equality and Non-Equality Constraints

There are two types of constrairEgjuality “==" and Inequality“>,>=,<,<=". Examples oéquality
constraints are rigid-ropes and ball-joints, winilequalityconstraints would be contacts and collisions.

Equality constraints have a fixed solution azahnotbe varied along the constraint direction. They're
formed by setting the constraint condition ‘c’ &ra, using the equality sign.

Inequalityconstraints can have numerous solutions and amefbby using a greater than or equal
operator in constraint equations.

In the steps mentioned earlier for solving the wvim constraint values, we used an equal sign for
AA =b. For inequality conditions, we modify our lineahger to handle linear complementary
problems. The modification adds the conditiah, and only accepts values greater or equal to zero,
essentially clamping so it is always positive:

Equality Inequality
AAd+b=0 Al+b=0
A=20
(AA+b) x = 0
c=0 c=0
¢=0 ¢=0

Due to inequality constraints having multiple résuve can check if we need them before we add them
to our solver, i.e.:

if c<0:

add¢ = 0to constraint solver
else

ignore

Jacobian

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

Forward kinematics enables us to define functibas tonvert between Cartesian space (i.e. posiinds
orientations) to constraint space, and the Jacabiaresents how this Cartesian-constraint space
relationship changes with respect to time, (e.gtgS&n-constraint spaeelocityrelationship).

The Jacobian gives the instantaneous transformbétween the constraint velocities and the rigidybo
velocities. Where, for objects in 3D, each rigidippdas six DOF, which represents the three linedr a
three angular velocities, for (m) rigid bodies we able to form a (6m) column vector containingtladi
rigid body velocities, in addition to our (n) corants, to form a (6m x n) Jacobian matrix, desogb
how all the objects in our system alowedto move.

Jacobian is a matrix function of the form:
¢=Jq (5)

where ((linear and angular) Cartesian space velocitiegatheé constraint velocities.
We can also expres3 as its separate angular and linear velocity cormptsn
qa=[v, w] (6)

for each body(is a 6x1 Cartesian velocity vector, (3x1) lineactor and (3x1) rotational vector
stacked together.

We can also write:

J=[3, 3, (7)
i.e.

v=13,¢

w=3.4 (8)

As we said earlier, a single unlinked object moum8D, can move in six possible ways, three lirsad
three angular. If you wanted to constrain the aifim moving in a certain direction, the ‘z’ diten,
for example, then you would set the ‘z’ velocityziero, effectively limiting translation movementthe
x-z plane. This is a simplified example of how aaldan works, and describes how constraints opavate
remove DOF to achieve a desired motion trajectdyile the Jacobian is at the heart of our analitica
method, it allows us to relate the classical eguatiof motion (f=ma) with Lagrange’s multiplier golve
systems of constraints. Later in the chapter we gumerous examples on how to describe and darive
mixture of common constraints and their Jacobian.

Because the Jacobian is central to our constraintulation, we will spend a bit more time explapits
mechanics in detail with examples to give a rodidaanderstanding. The Jacobian, sometimes catied t
constraint Jacobianis a matrix which allows us to specify which noois arenot allowed The number

of rows of the matrix determines the order of theatraint or the number of degrees of freedom r&dov
from the system. For most constraints we calculaie a frame by frame basis as it depends on the
body’s positions and orientations.

J= Changelnput: 0 In (9)
ChangeOutput 0 Ou

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

We can combine Jacobian matrices to formulate rmomgplex ones, by which we mean, we can
construct simple constraints and combine them il Imore difficult ones.

To repeat the most important equation of this eactheJacobian velocity constraims shown again
below in Equation (10), wher§ is the system body velocities, addis the derivative of the positional

constraints ¢ with respect to time, and producesttaints byremovingdegrees of freedom from the
system.

Jg=¢ (10)

To derive the Jacobian, we need to obtgimhich we attain by constructing a positional doxiat ‘c’
and differentiating it. The positional constraisiconstructed by representing how the body is &tbio
move with a kinematic equation such that when $aisfied, it evaluates to zero:

c=0 (12)

If we differentiate our positional constraint edaat(c) with respect to time, it will describe the
constraint velocity properties. Also as ‘C’ is ebuazero, the derivative should be zero:

¢=0 (22

Since we have said thatand ¢ will be zero and have explained that the Jacobé&msix elements for
each body which constitute how the six velocity poments change with respect to time, we can
conclude that any non-zero valuesdnwill affect the corresponding body velocities. Renber that
these are relative to the body’s point of refergitsgposition and rotation at that instance inetiamd can
need re-calculating as the object moves).

Using this knowledge, the Jacobian can be calaliatéhree straightforward steps; firstly, by
constructing an equation for the positional constsasecondly by differentiating it with respeattime
to get the velocity properties, and finally by mhg and extracting the Jacobian.

In some cases, you can compose the Jacobian dohstedrix by visually looking at the system, bat f
more complicated constraint schemes, you will nteddllow the steps above, whereby you'll find that
the ability to construct the Jacobian gets easitr pvactice. We give examples of simple Jacobian
constraint matrices in the next section.

Note
When a constraint only affects a single object, doels not affect or rely upon any other objectsy thre
referred to as ‘unary constraints’, whilst a coratit involving another point-mass or rigid body is
termed a ‘binary constraint’. In addition, the Jdman for binary constraints is usually the same but
reversed.

Constraint Equations

We now focus on explaining how we resolve the cairstis at the velocity level and the formulation of
our system of equations that we use to represermiroaedure. Even though we focus on the velocity
level, we can apply the same principles and pragtiche acceleration level without too much effort

During the simulation update, we calculated a §ebostraint forces, which we combined with the
external forces, to keep the constraints valid. iflaén equation, which we construct and use to deter
these cancelling constraint forces, is shown iufeadg:

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

JI\/I'lJT At +@(\(1 + M E AL > C

A b

Figure 3. Lagrange multiplier modified to fit astgm of linear equation to solve our constraints.

The equation can be initially overwhelming, but etice reader understands what it does and how it
works, it is very satisfying and rewarding. The LE&duations are usually presented in the form:

b= Ax+ g

13
b,x=0, b x=0 (13)
This may seem straightforward, but notice the cemgintary conditions (‘b’ is 0 when ‘X’ is not and
vice versa) and the non-negativity conditions éhd ‘x’ are >= 0), which is what makes the equaiso
useful and powerful.

But where does this equation come from, and whes domean? We will start at the beginning and
introduce the problem and how this solves it far us

It might not be obvious, but if a snapshot of adrigody simulator taken at any moment in time, the
system can be represented, using a set of equatianidustrates how it behaves. If the objects ar
connected (e.g. through contacts or joints), their individual EOM will be connected, and so weldbu
up a single large equation (i.e. using matricehljs Targe equation follows a set of rules, whighresent
how the system of objects can move, allowing ysréalict how the system will change with time.

Our formulation of a solver relies heavily on thigpiples of linear algebra. To restate, a bas#tesy of
linear equations in matrix form, would be:

Ax=b (14)

where we know ‘A’ and ‘b’, and we are trying todirx’. ‘A’ is a symmetric, positive definite sparse
matrix. The linear system can have three possiieomes:

* Asingle solution which converges
* No solution
* Infinite solutions.

We use the linear equation as the starting fouoddtom which we build our solver, expanding theiba
linear equation above so that it can be used foaldy and inequality constraints, i.e.:

Ax=band x 0 (15)

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

(From our ‘Ax = b’ linear equation above, if ‘Ax5inot equal to ‘b’, then we have to reformulaiatio
something more complex, i.e. ‘Ax-b = s’, and if make some assumptions, such as mentioned above,
‘Ax>=b’ and ‘x>0’, then we have introduced some staints.)

The large equation used earlier actually comes trasic algebraic principles. Since we are focusimg
the velocity level, we start with the simple vetgdntegration equation and convert it through
substitution and common sense into the equatiomeabo

At each time-step, we can use the Euler integratiethod to predict how the velocity will changeséa
on the applied acceleration and time-step. Wehisaipdated velocity to predict how our positiofl wi
change during our time-step, e.g.

V., =V, +aAt

Xn+l = Vn+1 +alt (16)
According to Newton’s second law (i.e. f=ma), we able to modify our velocity update to:
V.., =V, + M7'FAt (17)

With the velocity integration scheme, we extrapoiato solve for the applied acceleration changes,
which are proportional to the applied forces.

It is important to comprehend how we go from basilocity integration to the constraint equation.
Whereas a majority of the texts skim over the sttbjge will give a step-by-step justification ingkire 4.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

V., = v +a\t IM I Mt =J(v,+ MF

n+1-— ext

At)

_y J

Step 1.
i Vi = W "@At
1
i (Newtons Law F=ma, gk JF
1
i Vi = W t
E (Split Force into External and Constraint Forces
1 \
L VmTwrM
i
v
Step 2.
i _
i 'JVn+1:'J{ Vn + M I(Extemal + gnstraint)" :
E 'JVn+1:'JVn+ JM _](Fexternal + Eonstraint)‘-'
v
Step 3.
i
|
E [F= ‘10nstraint}\‘ j
i
i
v
Step 4.

Wiir =Wyt IM (Foerna 3120

(Substitute F = J\ |

‘Jvn+1=‘]Vn+ ‘]M _I(Fexternal) At Z 0
\ J/

~

-> [IMPJ'AAL=J(v + MR A1) >0 J

Figure 4. Four steps for deriving the constraiguation from the velocity integration step.

The two main steps in Figure 4, &and4, which we describe further.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

In Step 2, we integrate our Jacobian into the vgl@guation by multiplying it across both sides.
Recalling that the Jacobian defines how our objedtsmove, adding the Jacobian vector enable®us t
define the movement of our objects.

Step 4, is one of the biggest steps, as it briogsther the equations for classical mechanicstand t
Lagrange multiplier through the use of the Jacabide arrive at our final equation by splitting the
constraint force into its magnitude and directi@rhis is a very noteworthy step, and should be
remembered for later when we reuse it to reingarsolved values).

JM™J"is referred to as the effect mass matrix, and we iithe symbol ‘K’. For basic cases we can pre-
compute the effective mass matrix and simplifpishow additional properties in the way the comstra
behaves.

Note
When a solution for lambdal(is obtained, it can be used to give additiondimation about the
system, e.g. the stress or strain between congdrain

Additionally, during implementation, th& ™J" matrix should have no zeros in the diagonal.

Solving the equations gives us lambda, which whaltiplied by our Jacobian, gives us the constraint
forces. We add the computed constraint forcesd@piplied external forces before integrating. This
ensures that the constraints will constantly stidyeven when large external forces are applied.

The rigid body matrix representations for our siatigin are shown in Figure 5; where we collect tbget
similar attributes, such as position and orientatimear and angular velocities, into groups ofrinas.

We use quaternions to represent our rigid bodyentation, and hence our incremental update tolangu
velocity, using:
A 18
Onis = Ewn Un ()
So to achieve this same result with a matrix miidighion, we need to use a special matrix to reges
our quaternion orientation. We refer to this maaisxthe Q' matrix, which is inside the ‘'S’ matrix and is
of the form:

-X -y -z

1lw z -y
Q=

2|-z w X

y —-X w

where ‘w, X, y, Z’ are scalar and vector componeithe quaternion. To phrase it another way, the Q
matrix is essentially a sub-matrix representingrtitation using quaternions. (We highlight the ‘Q’
matrix above inside the ‘S’ matrix formulation).

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

6 D.O.F (3 Linear, 3 Angular) 3 D.O.F (3 Linear)

r 8 \ 1
mO 0 0 O mO0 O
0 mO O O M= 0 m2O
M= 0 0 moO 0 0 0 m
0 0 0 Ix Iy I
0 0 0 L=1I, L.
0 0 0 LI I, Rotation Inertia Matrix

Mass Matrix (Angular and linear components).

6 D.O.F (3 Linear, 3 Angular) 3 D.O.F (3 Linear)

r 3) "
FF.O O O 0 O F,O O
0OF0O0 0O F=|0OEO
- |00 F o0 0O 00 FE
000t 0 O
00001 O
0000 O«

z

Force Matrix (Linear Force and Angular Force, akaque).

6 D.O.F (3 Linear, 3 Angular) 3 D.O.F (3 Linear)

(A) t—
v, 0 0 0 0 O v, 0 0
0y 00 0 0 wy=[0y 0

ve| 00y o 0o 00 vy
0 0 Ow O O
0000w O
0 0 0 0 0w

4

Velocity Matrix (Linear and Angular Velocitys)

1 0 0 0 0 d
0O 1 0 0 0 d
0O 01 0 0 d
S= 0 00 4= qy 4, a n+1:%('0q n
0 0 04,4, 4,
0 0 O04g, q, 4, Q Matrix
| 0 0 © q, 4, 4,

S Matrix (combine quaternion matrix and linear comgnts).

6 D.O.F (3 Linear, 3 Angular) 3 D.O.F (3 Linear)

f A \ —

pb 0 0 0 0 © P 0 0
0 R 0 0 0O O X=1|0 R 0

_ 0 0 0 0 O 0 0 p

X = R =

000g¢g 0 0 X mE X #AUEV
0000 g O
0 0 00 0 g Exclude S if no Rotatio:

Position Matrix (Angular component is a quaterni

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

Figure 5. Matrix Configuration and Contents (Limend Angular Components).

Traditionally, using the Euler integration methoa would have integrated each component (linear and
angular) for each rigid body using Equations (18] €0).

Vv,

n+l

Xour = X% T Vg At

1
=v. +—F At
"'m ol (19)

a)n+l = a)n + a)nl InvWorld At

1 (20)
0 = G, +§a)n+1 d, At

We move our rigid body into matrices and performititegration update using Equations (21) and (22)
below.

21
un+l = un + At M_l Fext ()
_ (22)

sn+1 - 51 +AtS lrLl

This is the basic integration without any interventfrom our constraint forces, which we add irfte t
modified block matrix integration:

Uy, =U, +AtM7IF, — (AtM ™" X) (23)

Sw= §+HALSY, (24)

where (AtM 7J"X) uses the cancelling force magnitude in ‘X’ to fe@ck into the integrated update and
keep the constraints valid. The following code peig show the method implemented in code.

/I Basic Integration without constraints or collisi ons
u_next = u + dt*MInverse*Fext;
s_next = s + dt*S*u_next;

/I Basic Integration without constraints or collisi ons
u_next = u + dt*MInverse*Fext - MInverse*Jt*x;
S_next = s + dt*S*u_next;

Code 2. Modified integration step with our addedstraint forces.

Block matrix methods make it possible to group thgesystem state variables, such as forces, velsci
and positions, into intuitive manageable piecesraddces the amount of code disarray. In the sample
above, we use a matrix to represent the positidrratation of each body; alternatively, you canlede
this fragment and merely solve for the constraintds, then apply them as you would to the simulato
The reasons for this may be because the conssi@irér is part of a larger system where objects are

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

unable to be merged into matrix formation, or bseaitiis easier to manage data some other waytodue
optimisation.

Whilst we use methods to combine angular and lineerponents into single larger matrices, it can
sometimes be more efficient to separate them imdividual matrices so as to disable and enable
rotational components for debugging, or altern&idevelop a point mass simulator which contains no
rotational components. For example, the mass miatedxcombination of the linear and angular mass
components (centre of mass and inertia tensorsghvdould be broken up into two separate matrix
functions.

Initially, matrix methods in combination with antibal solutions can seem like more work compared to
the penalty and impulse methods, but the results gg a reliable, flexible simulator, which requaiiitle
or no user tweaking.

Our solver uses classical mechanics in combinatitinLagrangian multiplier technigues, so we arkeab
to formulate systems of equations to calculateneessary forces to apply at each frame and enable
constraints to remain legal. For example, a balimg on the floor has a downward force appliei, to
known as gravity. We cannot allow this downwardéto update the velocity and let the ball move
translate downwards. Hence, we add a contact eomisto the system to prevent this penetration
violation. This constraint would produce a canogllupward force, keeping the ball resting on the
ground. The complementary part of the solutionhemvthe ball is falling with velocity, and we nded
add an impact force, causing the ball to bounceangsvand not stick to the ground (it can move up bu
not down).

Algorithm Steps

1. Apply forces and torques (i.e. from springs, gna\étc.).
2. Build matrices for rigid body masses/velocitiesiposs.
3. Build Jacobian constraint matrices representingpuarconstraints.
4. Evaluate your system by solving for lambda.
5. Build constraint forces using lambda and Jacobiatrioes.
6. Calculate and apply constraint forces.
7. Integrate and update as usual.
I void Simulation_c::Update(float dt) I
/I Add gravity, forces from springs etc.
ComputeForces(dt);
/I Calculate constraint forces and apply them to ou r system

ComputeJointConstraints(dt);

/I Step forwards in time - integration done inside ComputeJointConstraints(..)

i /I using block matrices, but you can disable it and integrate using .
/I an alternative integrator
llintegrate(dt);

) a

Code 3. Steps for updating code.

Note
Making objects immovable by setting their mas®to pr making their mass near infinite (e.g.
10000000) can crash the simulator. This is bec#lisesolver needs to invert the matrix, so largeeno

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

values can result in a n-invertible matrix.Large values may not crathesimulation, but i car require
a very large number of iterations to find its insersolution.

‘1D’ Numerical Example

The best way to get familiar with solvers is preetiwhich we now do using simplified straightfordar
test cases that we analyse with common sense aleistanding. Common mistakes to keep an eye out
for initially, are errors due to wrong number s{grinstead of a -) or invalid divide by zero troesl

We start with simple 1D examples, where we do eeidnto worry about rotation, just the translateomd
can focus on the force magnitudes and directiortger@by, our matrix formulations will be greatly
simplified (e.g. the mass matrix in 1D is cut dowra single variable for each object), so we caiuate
the equations by hand. It is also recommendedhtissimplified approach is used to work through
additional problems which will demonstrate firster@rinciples of how constraint solvers achievelié
simulations, such as jitter free stacking.

IOnIy Direction of Movement m,=1 gravity=-1 dt=1
|

E i M| ha O Immovable, hence 0
£ =} lohT =0
g o _[1 o}
c (8 J-—& =0 0
- 2
Ir‘nmovable ~— Number of Bodies (2)
J=[1 1] Number of Constraints (1)

-1 _|-1

V"_{O} E“_{'J A= aMig=[1 072 Q]2
- B 00||l0
b = .](Vn+ M-lFexl) S 1
o [3
=[11] 1,101 0
0]"loo0]|-1
1, -1
:[1 1] [0:‘+|:0:|) AxX+b=0
o -Ax=Db

=11 113 €02D) SEINTEY
Solved it, so but the results back into our system.
Fconstrainr: ! FO al— Fe><+FCDHS rain

I " t - Our new force which
= 1 [2] = 2 = _1 + 2 =% H H H
0 2 1171 2]T|1|) stops the objects intersecting

Figure 6. Numerical Example

The example shown in Figure 6 is constructed biyntalt single object and letting it rest on an
immovable surface. Then when we apply downwardefahee to gravity, the top object will continue to
stay fixed. Since it is only a straightforward exden we use a very simple uncomplicated Jacobian fo

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

our constraint, which prevents any movement insthgle-axis direction. Of course, to make it dditt
more interesting, the top object also has an iaterelocity, so the calculated resultant force, whe
integrated into the velocity, will cancel it outekice, our constraint solver keeps our resting dbjethe
surface as the simple constraint demands.

If the question; why do we get [1,1] for the resgtforce and not [0,0], is asked, this is as watioaed
earlier. Our object has an initial velocity of 8],,s0 a positive force is necessary to cancethosit
downward velocity and keep our constraint validvéf have had zero velocities, the downward force
would have cancelled out, leaving us with [0,0].

It should be well-known by now that the solver nretmrun each frame before the integration stejchwh
updates the velocities and positions. This pre-stgtuation calculates the correcting constrairtds
which, when applied to the input forces, (e.g. frgmavity, wind, springs) keeps the constraints llega

1D Example — Multiple Bodies

Continuing to keep the examples as simple as dessile can build on the previous example to illatstr
stacking. The configuration shown in Figure 7 cstssof three objects stacked upon one another; each
having equal mass.

Only Direction of Movement m.=1 gravity=-1 dt=1

— #, 00 0 1000
- M.lzor%‘boozoloo
= 00 #.0 o010
3 . 00 0m 0000
5
g Number of Bodies (4)
2

5 }Number of Constraints (
In bl
mmovable 210
— -14T _ _ _
0 1 A=JIMJ=|-1-1-1
0-1-1
v,=|1| E,= -1
n 0 ext _1 3
0 -1 b= J(V+M exl) =|-3
-1
1
Ax+b=0 A=|1
0
The solution is then put back into the system:
%] [1]] [o
L= "\ — = L= '1 2 = 1
FCOr‘ISt[aII‘If_J >\ - 1 Ftotal Fext+Fconstra|nt _1 + l 0
0 -1] |0l |11

Figure 7. Numerical Example.

We set all the objects to have zero velocitiesaltyt except the second to top one, which we et t
having an internal downward velocity. As above we a simplified constraint formulation to calculate

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

the constraint force to prevent movement of theats; The solved example calculates the modifiezkfo
to stop the objects moving downwards, includingdditional force to cancel the second to top body’'s
velocity.

Drifting (Baumgarte Stabilization)

The constraint calculation keeps the system ofteaings valid by cancelling out any violating
forces/velocities. However, due to numerical inaacies in calculations, or bad starting values, the
constraints can become invalid, and so we needtifynour calculation slightly to correct this.

To solve for this, we modify our solver equationdading a feedback term, which gradually corrects
drifting errors. We achieve this correction by gsthe position constraint ‘c’, to feed back inte th
velocity constraint, causing the simulation corigtsato remain valid at all times.

Modifying our original velocity constraint from Egtion (10) to give feedback, we get:
¢=Jg+pBc=0 (25)
where g is the bias facto(0< g < 1).

This corrective term is effectively the same asirgld spring, due to its remedial nature being
proportional to the positional error.

float beta = 0. 1f ; /I Drifting correction factor

DMatrix Jt = Transpose(J); /I Formulation of the solver equations
DMatrix A = J*MInverse*Jt;

DMatrix b = J*(u + dt*MInverse*Fext) + 1
bet a*c; /I Drifting (Baungarte) appended on end

DMatrix x(A.GetNumRows(), b.GetNumCols()); '

' /I Solve for x :
 LCPSolver(A, b, &x); Il Solver, equality constraint case]

Code 4. Drifting correction — achieved by appegdindrift correction term to the base solver eqoiati

Note
If the simulation begins with invalid constraintfigurations, the Baumgarte feedback term will @us
the system to try and correct itself. Additionallig can use this effect to modify our contact cairgs,
so that if they penetrate, the constraint will gpalcorrecting penalty force to push the shapesobut
penetration.

Constraint Examples

Formulating the constraint condition ‘C’, we carccgate how to differentiate and extrapolate the
Jacobian to determine how our system moves arektaat its movement to create our constraint.

Example: Fixed with no translational or rotational movement
Formulate the positional constraint:

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

c=[q-P. G- R G4~ B 8- Po A, Py 8- H]=0 (26)

whereq,,q,,q,, 4,.%,.G,are the position and orientation of the body, adp, . p,, p,,. Py, . B, ar€

the global translation and angutamstantsNoting that ‘0’ represents a zero vector [0,0@), if we
then differentiate this constraint with respectinoe, we obtain the velocity constraint:

¢=[4.8,4.9,.9,.9,]=0C (27)

Since our constraint position and orientation amestant, they simply cancel out during differemigt
hence enabling us to compare and isolate the Jatobi

O O O O O -
o O O O+ O
o O O+ O O
o O r O O O
O B O O O O

=, O O O O ©

We make the constraint from six rows and takes aiwagegrees of freedom, hence the rigid body
cannot move in any direction or orientation.

Example: No movement along the X-axis

From the previous example, we can then build uperfdct that if we use only a single row, we can
eliminate a single degree of freedom.

[L 0 0 0 0 dg=¢c (29)

Through visual analysis, we can make out that glecity in the x-axis is cancelled out by having a
single 1 in the first column, hence no velocityhis direction results in no movement. Since theeot
velocity components are not affected, we can dethatethey will be unaffected. This constraint
formulation only affects the changing velocity t@yent movement in a single direction, and not the
actual position at each moment.

Example: No rotation around up vector (y-direction)

Whereas we removed translation in the x-axis presho we extend this further by removing a single
axis of rotation. It should be visually clear thtz first three columns are the positional constsaiand
the final three columns make up the rotational mus1eat.

[00001pg= (30)

As shown above, adding a one to the fifth colun@vents any angular velocity in the y-axis and hence
any rotational movement similarly.

Example: Ball and socket constraint

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

When dealing with pairs of bodies, we need to ugeXacobian matrices to represent the constraint
condition. Below, we show the formulation of a Kalht, by constructing its positional constraihen
differentiating it, so we can extract the Jacobi@reach object. Notice that the rows are a contlunaf
translational and rotational information; making ttonstrained movement more complex.

c=[(p+1)=(po*+r1,)]=0 (31)

where p represents the object centre, and r théweloffset from it.

(::[(v1+a)1><rl)—(v0+a)o><r0)]:0 (32
J, =01 3 =11 (39
100 0 r, - 100 0 r, -y
010-, O r,|d=|0 1 0-1, 0 r,ld,=¢ (34)
001w -, O coo1l1lr, -, O

wherer,, r, represents a 3x3 skew matrix which is equivalerihéocross product.

Example :Fixed Point (Nail)

If we took our object and just stuck a nail throwagty point, it would stay locked at that point vettill

able to rotate. We effectively use the same mettsoabove (ball and socket), except, we only have a
single body. The Jacobian formulation is shown Wweknd shows how the object cannot move in the ‘X',
'y’ or ‘2’ direction but can still rotate relativi® a specific point.

100 0 r, -r,
010-r, 0 r |g=C (35)
co1r -r, O

wherer,,r r represent the offset from the object’s centre éoptbint we are rotating around.

Example: Distance constraint (No Rotation)

A simple and useful constraint, especially whenkivay with point-masses is a distance constraint
whereby the distance between any two points reniaied.

Setting up the conditions under which a constnaimild be valid, we can say that the distance must
always be equal to some length (l):

[IPO- plf| (36)
where ||p0-p1|| is the length between the two poipd’ and ‘pl.

Constructing the position constraint ‘c’, we have:

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

c=|| p0- pl|-I=C (37)

Knowing ‘c’, we can differentiate it to gét and using the definition for the Jacobian velpcitnstraint,
extrapolate the Jacobian component:

Jg=¢ and vo
g F| 1 (38)
J=[-A" A" (39
e.g.
(0.7, 1]o=0 “0
where ‘n’ is the unit vector between the two paints
7 = (P1~ p0) (41)
[[p1-pO]|

Example: Contact Constraint

We formulate a contact constraint which uses thmtamb normal ‘n’ to prevent objects intersectingeT
added difference between this constraint and teeigus constraint examples is the added boundary
condition. Whereas we used the equality condittrpfevious examples, we now apply an inequality
condition for the solutiom to be greater than or equal to zero, warrantingatd to move away from
each other. For the calculations below we takegyfanted that the normal vector is pointing from yibd
to bodyl.

c=[(p,+1) = (po+ry)]MH,=0 (42
¢=[(q+ @ x 1) = (Vo+ @yx 1) Chy+[(py+ 1) = (Pt)] Mewx) =0 (43
J, =[R, pxnl, J=-h rxn] (44)

n, 0 0 0 g -a, n, 0 0 0 3§ -8,
on 0 - 0 & |- 0 nn 0-3 0 3 7q=¢
0O 0 n, & -& O 0 0 n a3 -3 O

(45)

where ‘r’ is the relative offset from the objechte to the contact point are =r,xf,, a =rxn,.

When implementing this constraint, it is cruciakéonembed = 0 for the boundary conditions. We can
additionally add friction by modifying our constnaito add a cancelling force along the tangential
direction of movement.

IMPLEMENTATION

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

Writing the code

Below is the code for the rigid body class, whidcapsulates the properties of each object. We atpar
out the angular and linear components, so thatameeasily modify it to work with full 3D or point-&ss
simulations.

class RigidBody c /I DirectX Implementation

/I<-=------- LINEAR >< AN GULAR----=-=------- >
D3DXVECTORS3 m_position; D3DXQUATERN ION m_orientation;
D3DXVECTORS3 m_linearVelocity; D3DXVECTOR3 m_angularVelocity;
D3DXVECTOR3 m_force; D3DXVECTOR3 m_torque;

float m_invMass; D3DXMATRIX m_in vinertia;

void AddForce(const D3DXVECTOR3& worldPosForce,
const D3DXVECTORS3& directionMagnitude)

DBG_VALID(worldPosForce);
DBG_VALID(directionMagnitude);

m_force += directionMagnitude;

| D3DXVECTORS3 distance = worldPosForce - m_po sition; |
i D3DXVECTORS3 torque = Cross(distance, dire ctionMagnitude); '
! AddTorque(torque);]
i DBG_VALID(m_force); .
' DBG_VALID(m_torque); '

void AddTorque(D3DXVECTOR3 worldAxisAndMagnitudeTorque)
DBG_VALID(worldAxisAndMagnitude Torque);

m_torque += worldAxisAndMagnitudeTorque;

}

D3DXMATRIX CreateWorldll()

D3DXMATRIX orientationMatrix = CreateMatrix FromQuaternion(m_orientation);

D3DXMATRIX inverseOrientationMatrix = Tran spose(orientationMatrix);

D3DXMATRIX inverseWorldInertiaMatrix = inve rseOrientationMatrix * m_invinertia *
orientationMatrix;

return inverseWorldInertiaMatrix;

Code 5. Basic Euler Integrator.

Note
Disable Rotation — If the rigid body simulator caims bugs, it is best to go back to basics, if dagu
problems are suspected, remove the rotation, theipws degrees of freedom and add them back when it
is known that they are working.

Iterative LCP Solver

From the code below, you can see that the LCP sobresists of nested loops, within which we modify

our starting approximation iteratively and conveggadually towards a solution. Where the samplecod
uses a preset maximum number of iterations (maatiters) for straightforwardness, we can alternétjve

add an early breakout condition to accelerateithalation, which we introduce later.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

+ void GaussSeidelLCP(DMatrix& a, DMatrix& b, DMatrix* x, const DMatrix* lo, const DMatrix* hi)
{
b int maxlterations = 10; // Test Max value
x->SetToZero(); /I Clear our matrix to start with (slow, only for d ebug)

const int n=x->GetNumRows();

float sum= 0.0f;
while (maxlterations--)

for (int i= 0;i<n;i++)
{ sum = b.Get(i);
for (int j= 0;j<n;j++)
{ it (i=])
i sum = sum - (a.Get(ij) * x->Get(j);

/I'If a.Get(i,i) is zero — you have a bad matrix!
DBG_ASSERT(a.Get(i,i)!= 0. 0f);
x->Set(i) = sum/a.Get(i,i);

/I'lf we have boundary conditions, e.g. >= or <=, t hen we modify our basic Ax=b,
/I solver to apply constraint conditions

/I Optional - only if bounds

if (lo]|| hi)

for (int i= 0;i<n;i++)

if (lo)
DBG_ASSERT(lo->GetNumCols()== 1); /I Sanity Checks
DBG_ASSERT(lo->GetNumRows()==n);
if (x->Get(i) < lo->Get(i)) x->Set(i) = lo->Get(i);
if (i)
DBG_ASSERT(hi->GetNumCols()== 1); /I Sanity Checks

DBG_ASSERT (hi->GetNumRows()==n);

/I Only do condition to check if we have them
: if (x->Get(i) > hi->Get(i)) x->Set(i) = hi->Get(i);

/I We've solved x!

Code 6. lterative Solver — showing how simple it ba to invert a matrix.

Note

Fewer Iterations — If you notice in the exampleetat the ‘Gauss-Seidel’ iterative solver, it cledhe

solution matrix to zero at the start. This makesalsumption that our initial guess is zero. Adiast

method is not to clear the matrix, instead jushgghe values that are still in it from the previduame.
This will give us a good starting guess, enablingaifind a correct result with fewer iterationsedio

very small changes happening between frames.

Constraints that ‘Snap-Together’

One important aspect when writing a solver is titenthe code in such a way that it can easily lzptet
and the code expanded to handle new constraintsariidjurations. We do this by constructing a

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

common virtual base class, which all constrainterit from and implement, so that we are able togp
in’ any constraint into our simulator as and whenneed it.

class Constraint_c

o :
' public : |
i virtual ~Constraint_c(){}
virtual DMatrix GetPenalty() { DBG_HALT; return DMatrix(0, 0);};
virtual DMatrix GetJacobian(const RigidBody_c* rb) { DBG_HALT; return DMatrix(0, 0);};

i virtual int GetDimension() const { DBG_HALT; return 0; %

' h 1

If equality and inequality constraints are to b@liemented, a base method should be added to
differentiate them (i.e. as shown below). Thesesarthe inequality conditions can incorporate aoldl
boundary checks when solving the system of equstion

‘Heart’ of the Simulator

Below we show the functiortémputedointConstraints ', which is responsible for asking every constraint
about its dimensions, then constructing large spanatrices, which correspond to the system
configuration and calculate the corresponding cairdtforces:

void Simulation:: ComputeJointConstraints ()
{

/I Magic Formula

I

/[J* MA-1* JM * lamba = -1.0 * J * (1/dt*V + M A1 * Fext)

Il

IIAx=b

I

/I where

Il

/IA=J*MA-1*IM

/I x = lambda

/b =-J* (1/dt*V + M"-1 * Fext)

Il

const int numBodies = m_rigidBodies.Size();
const int numConstraints = m_constraints.Size();

if (numBodies== 0 || numConstraints== 0) return

e e
/I 1st - build our matrices - very bad to build the m each frame, but
Jlmmmmm e e
/I simpler to explain and implement this way

DMatrix s(numBodies* 7, 1); /I pos & grot

DMatrix u(numBodies* 6, 1); /I vel & rotvel

DMatrix s_next(humBodies* 7, 1); /I pos & grot after timestep

DMatrix u_next(numBodies* 6, 1); /I vel & rotvel after timestep

DMatrix S(numBodies* 7, numBodies* 6);

DMatrix MInverse(numBodies* 6, numBodies* 6);

DMatrix Fext(numBodies* 6, 1);

for (int i= 0;i<numBodies; i++)

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

const RigidBody_c* rb = m_rigidBodies][i];

s.Set(i* 7+0) = rb->m_position.x;
s.Set(i* 7+1) = rb->m_position.y;
s.Set(i* 7+2) = rb->m_position.z;
s.Set(i* 7+3) = rb->m_orientation.w;
s.Set(i* 7+4) = rb->m_orientation.x;
s.Set(i* 7+5) = rb->m_orientation.y;
s.Set(i* 7+6) = rb->m_orientation.z;
u.Set(i* 6+0) = rb->m_linearVelocity.x;
u.Set(i* 6+1) = rb->m_linearVelocity.y;
u.Set(i* 6+2) = rb->m_linearVelocity.z;
u.Set(i* 6+3) = rb->m_angularVelocity.x;
u.Set(i* 6+4) = rb->m_angularVelocity.y;
u.Set(i* 6+5) = rb->m_angularVelocity.z;

const D3DXQUATERNION& g = rb->m_orientation;

DMatrix Q(4, 3);

Q.Set(0, 0)=-q.x; Q.Set(0, 1)=-q.y; Q.Set(0, 2)=-q.z;
Q.Set(1, 0)=q.w; Q.Set(1, 1)=q.z; Q.Set(1, 2)=-q.y;
Q.Set(2, 0)=-q.z; Q.Set(2,1)=q.w; Q.Set(2,2)=0.x;
Q.Set(3,0)=q.y; Q.Set(3, 1)=-q.x; Q.Set(3,2)=q.w;
Q= 0.5f *Q;

DMatrix Idenity(8, 3k

Idenity.SetToZero();

Idenity.Set(0, 0) = Idenity.Set(1, 1) = Idenity.Set(2,2)= 1.0f;
S.SetSubMatrix(i* 7+0, i* 6+0, Idenity);

S.SetSubMatrix(i* 7+3, i* 6+3, Q);

DMatrix M(3, 3);

M.Set(0,0)=M.Set(1,1)=M.Set(2,2)=rb->m_invMass;

const D3DXMATRIX& dxm = rb->CreateWorldlI();

1.Set(0, 0)=dxm._11; I.Set(1, 0)=dxm._12; I.Set(2, 0)=dxm._13;
1.Set(0, 1)=dxm._21; I.Set(1, 1)=dxm._22; I.Set(2, 1)=dxm._23;
1.Set(0, 2)=dxm._31; I.Set(1, 2)=dxm._32; I.Set(2, 2)=dxm._33;
Minverse.SetSubMatrix(i* 6, I* 6, M);
Minverse.SetSubMatrix(i* 6+3,i* 6+3,1);
DMatrix F(3,1);
F.Set(0, 0) = rb->m_force.x;
F.Set(1, 0) = rb->m_force.y;
F.Set(2, 0) = rb->m_force.z;
D3DXVECTORS3 rF = rb->m_torque;
DMatrix T(3, 1);
T.Set(0, 0) =rF.x;
T.Set(1, 0) =rF.y;
T.Set(2,0)=rF.z;
Fext.SetSubMatrix(i* 6, 0, F);
Fext.SetSubMatrix(i* 6+3, 0, T);
}
Jlommmm s e
/I 2nd - apply constraints
Jlommmm s e

/I Determine the size of our jacobian matrix
int numRows = 0;
for (int i= 0;i<numConstraints; i++)

const Constraint_c* constraint = m_constraints]i];
DBG_ASSERT(constraint);
numRows += constraint->GetDimension();

/I Allocate it, and fill it
DMatrix J(numRows, 6*numBodies);
DMatrix e(numRows, 1); /I Error Correction

{ DMatrix I(3,3);

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

int constraintRow = 0;
for (int c= 0; ccnumConstraints; c++)

Constraint_c* constraint = m_constraints[c] ;
DBG_ASSERT(constraint);

for (int r= 0; r<numBodies; r++)

const RigidBody_c* rigidBody = m_rigidBodies][r];
DBG_ASSERT(rigidBody);

DMatrix JMat = constraint->GetJacobian(rigidBody);
if (JMat.GetNumCols()== 0 && JMat.GetNumRows()== 0)
continue ;

DBG_ASSERT(JMat.GetNumCols()!= 0);
DBG_ASSERT(JMat.GetNumRows()!= 0);
J.SetSubMatrix(constraintRow, r* 6, JMat);
DMatrix errMat = constraint->GetPenalty 0;
e.AddSubMatrix(constraintRow, 0, errMat);

constraintRow += constraint->GetDimension() ;

}
float beta= 0. 1f; // Error correction term

DMatrix Jt = Transpose(J);

DMatrix A = J*MInverse*Jt;

DMatrix b = J*(u + dt*MInverse*Fext) + beta*e;
DMatrix x(A.GetNumRows(), b.GetNumCols());

DMatrix* lo = NULL; // Don't set any min/max boundaries for this demo/s ample
DMatrix* hi = NULL;

/I Solve for x
LCPSolver(A, b, &x, lo, hi);

/[dprintf(A.Print());

u_next = u - Minverse*Jt*x + dt*MInverse*Fext;
s_next = s + dt*S*u_next;

/I Basic integration without - euler integration st andalone
/I u_next = u + dt*MInverse*Fext;
/I s_next = s + dt*S*u_next;

Jlmmmmm e e
/I 3rd — re-inject solved values back into the simu lator
e e
for (int i= 0;i<numBodies; i++)

{
RigidBody_c* rb = m_rigidBodies]i];
rb->m_position.x =s_next.Get(i* 7+0);
rb->m_position.y =s_next.Get(i* 7+1);
rb->m_position.z =s_next.Get(i* 7+2);
rb->m_orientation.w =s_next.Get(i* 7+3);
rb->m_orientation.x =s_next.Get(i* 7+4);
rb->m_orientation.y =s_next.Get(i* 7+5);
rb->m_orientation.z =s_next.Get(i* 7+6);
rb->m_linearVelocity.x = u_next.Get(i* 6+0);
rb->m_linearVelocity.y = u_next.Get(i* 6+1);
rb->m_linearVelocity.z = u_next.Get(i* 6+2);
rb->m_angularVelocity.x = u_next.Get(i* 6+3);
rb->m_angularVelocity.y = u_next.Get(i* 6+4);
rb->m_angularVelocity.z = u_next.Get(i* 6+5);
rb->m_force = D3DXVECTOR3(0, 0, 0);
rb->m_torque = D3DXVECTOR3(0, 0, 0);

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

/I Just incase we get drifting in our quaternion or ientation
D3DXQuaternionNormalize(&rb->m_orientation, &rb->m_orientation);

Code 7. Section of code that actually does theienhyg building the large sparse matrices, passham
to the solver which returns the corrected the feraad torques which we re-inject back into the
simulator.

Of course, the solver is the one that is goingotltstime most of the time, as it has to determinachsal
solution to the matrix. The code of our iteratiedver, however, is really quite simple. As mentione
earlier, if one is dealing with real-time applicats, an iterative solver should always be used.

Why do solvers break?
When implementing a solver, there are a few thindseep an eye out for:

e Overly constrained systems.

* Numerical error (drifting, floating point accuracy)

» Divide by zero errors.

* Impossible constraints.

* Invalid coordinates (e.g. placing rigid bodiesdaritical locations).

» Bad code (e.g. memory leaks, memory corruption,iacatrect implementation of algorithm).

Note
Diagonal Zeros — If there are zeros on the diagpeaimething is wrong. It can cause the LCP solver t
break, giving solutions that go to infinity.

Bad Constraints

There are times when the simulation constrainte@glne solved, usually because of human error or
some unforeseen circumstances. This commonly oedues constraints fight or violate each other, so
that no one single solution exists to keep alldestraints valid. An example is illustrated below,
whereby two objects are placed out of reach ofasraher using nail constraint, plus an additiooat]
constraint connecting them. These constraints adittreach other because the objects cannot beiept
of reach and also connected. For instance, iexhenple shown in Figure 8, illustrates an impossibl
constraint situation.

Nail Constraint

-
-’ e

Joining Constrain

Figure 8. Impossible constraint situations.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

These ill-conditioned constraint configurations @amoduce erratic behavior into the simulation doese
there is no real solution. However our iteratioéver, more often than not, aims to find a best-fit
approximation, which will allow us to move forwairdthe hope that the configuration fixes itself.

Point-Mass Constraints (2D, No Rotation)

Using a simplified constraint solver, rotations ¢encut out, just working with position constrajnts
enabling complex structures to be constructed ir2BD just using point-mass objects. Simple
constraints (e.g. nail and distance) let the sdbestested before moving onto rigid bodies andrayliti
rotations. Figures 9 and 10 illustrates examplg®mt-mass constraints for constructing articediat

structures.
//5 :

.
.

~

Figure 9. Simulation screenshots for Point-Masy&ol(Spheres represent connecting joint constsaint
and the lines represent point-mass distance comssja

The code, written for simplicity, has no optimisais, is inefficient and slow, but has been writien
introduce a working solver that can be played wotlyain understanding. All the particles have agwds
1, but they can easily be set to different valuesaybe draw larger spheres for larger mass? We used
only two constraint types, fixed (nail) and distarfoods), but other constraints and springs camiked
in. The simulation runs in 3D, so all the pointsl @onstraints actually solve for ‘x’, 'y’ and ‘ZAyut we

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

clamp the ‘z’ to zero and render in orthogonalitedhe appearance of 2D; so elaborate 2D or 3D
structures can be constructed.

We set a fixed number of iterations for the solemo, so the constraints will stretch slightly fimge
forces. We thought this was acceptable, but thaqman iterations can be increased and the errobean
monitored.

The mass-point solver in 2D/3D environments candel to create dynamic structures, from which
orientation and rotation information can be exedcby using positions of point masses to buildup
reference orientation.

Point-Mass Constrair Rigid Bodies

Distance Constraints
Point-Mas
K Y 51 b
\ y
« —\ ! |:> =\ r

Figure 10. Use point-mass configurations to exti@i¢ntation (rotation) information for graphical
models or rigid bodies.

Point Mass Demo (3D, No Rotation)

Expanding the simple point-mass demo to 3D, wisplzere dropping onto a mesh surface, we added
constraints at each frame between the rigid botigrgs to keep their distance to the sum of thdiusa
as shown in Figure 11.

Temporary Distance Constrai Immovable

Point-Masse

Figure 11. (Left) Demo screenshot — large spheltmfponto the distance constrained net. (Right)
Simplified diagram showing how we handled collisibetween spheres and mass-points.

Stable stacking demo (3D, With Rotation)

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

A good test for any physics simulator is the apiid deal with large stacks of objects. Creatirggadole
stacking configuration is in part down to how rbleathe contact information is, and how much it
changes between frames. To create reliable canfaciation, reliable contact manifolds need to be
built, which are in contact across multiple fram@&then we stack objects that are not moving, the
collision information between frames should remthim same, and not jitter around due to floatingnpoi
errors and re-calculation of collision points.

Figure 12. Stacking demo, 700 rigid body cubes @ircular tower.

SPARSE MATRICES

Applying conventionatiense matrixechniques to solve systems of constraints predentthis chapter is
an exceedingly ill-advised thing to do. As mentidmarlier, the matrices used in our solver aresgpar
and we need to use this sparsity to our advan¥mecan see a simple demonstration of the spavbity
matrix illustrated in Figure 13, where we plot tien-zero matrix values to the right of the simulati
screenshot in the figure.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

20x20 mass points with distance constri
400 rigid bodies

O_
764 constraints N\
) . ”’ﬁ%,
"m%%
D
N0
N
N\
AN
DO
%ﬁr
i O\
AN
772_ T T T T T T T
0 200 400 772

100 rigid bodies
488 constraints 0—

400 +

908-

40C 90¢

o6 200
Figure 13. Sparsity pattern of td& ™J" matrix for constraint simulations. Top, mass-palistance
constraints constructing a net (matrix is less thiéf filled). Bottom, circular stack of rigid bodieFhe
graphs to the right illustrate the matrix density.

Taking advantage of operator overloading, espegdia# multiplication operator “**’, allows us to @
more robust code with the ability to track downlgemns early on. Asserts and halts enable runtime
problems to be detected, both by other people ubimgode, or just silly typing mistakes. Thesedjoo
coding techniques will help prevent memory corroiptind random unpredictable crashes in unrelated
code. Reliable code will ‘'stop’ and tell udy. If possible, code that ignores a situation wititelling us
and attempts to cope with the problem and contisleuld be avoided.

When implementing the matrix code, a wrapper ctasaild be used so that various implementations for
comparison and profiling can be swapped out. Thezerumerous matrix solutions freely available
(Dongarra, 2009), each having their own advantagedsdisadvantages, and trading between various
features such as memory and access times. We liceafew methods here, giving the source for an
STL mapping method.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

Initially, the aim should be to get the LCP conistraolver working, without worrying too much about
optimisation. Later, when things are working asested, everything can be sped up. The first
implementation will use a dense matrix method, w&ilkinitially be the biggest slowdown, because 90%
of the time it will be managing the matrix data,em massive chunks of memory will be created,
destroyed and copied in each frame.

Sparse matrices enable us to gain optimisationdsipsewhile saving memory and bandwidth. In
addition, our linear iterative systems are alse ablexploit sparsity, by skipping unnecessary
calculations, to improve performance, where eviematroperations like filling an x m matrix with ‘0s’
would take ‘O(nm)’ time, for a dense matrix candweided.

Note

A matrix wrapper class will give safety checksaemay of out of bound checks, and enable various
internal optimisations (e.g. memory speedups) tadmed without modifying the working solver code.

If multiple platforms are worked on, a lot of ptatih specific code inside the matrix class can be
embedded without complicating the solver.

The matrix code can be expanded to use templatétsgan work with more data types, other than just
floats, e.g. doubles, or any other objects, sait be expanded to other situations, such as image
processing or fluid dynamics.

One of the biggest slowdowns that will be encoweden solvers, other than actually solving the esyst

of equations by inverting the matrix, is the dynamature of the matrices. Dynamic constraints, ssch
collisions and contacts can appear and disappear filame to frame, which means resizing and updatin
the large matrix. Modifying the matrix by each feanmeans introducing additional slowdowns, as the
matrix class is allocating and reallocating larbarks of memory each frame, and if using the
assignment operator, it is also being copied. Fdicsconstraints, there is the added benefit becency
between frames, which we can exploit for speedups.

\ // Build ... :
i DMatrix Minverse(numBodies, numBodies); '
' DMatrix MFe(numBodies, 6); '

;. DMatrix MVel(numBodies, 6);

DMatrix JMatrix(constraints, numBodies);
i DMatrix JTransposeMatrix = Transpose(JMatrix);

'/l fill with data

' DMatrix A = JMatrix * Minverse * JTransposeMatrix;
i DMatrix b = JMatrix * (MVel + MInverse * MFe);

Code 8. Showing a slice of code, where working milfrices is as easy as working with base variables
like ints and floats.

In a poorly implemented solver with little considion for matrix management, the biggest slowdown
will be the matrices, where a large number of rigodlies and constraints can produce very largeiceatr
which are difficult to manage and manipulate aigher large memory allocations and copies.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

We solve our slow matrix implementation by takimtyantage of our custom matrix wrapper class, where
we are able to optimise things under the hood,gusiathods such as custom caching and memory pools.
Internally, the matrix class should have a Matrixidger, which we shared across matrix instances, and
stores common sized matrices, so instead of cgetitam, the manager would have them loaded and
ready for use.

In those cases when the matrix has not actually Hestroyed and created, but exists as a member
variable, or a single instance, you can have iplkekarge chunk of memory internally, so when the
matrix is resized to make it smaller or biggewiit keep enough memory internally for a larger mat
So if the matrix through experimentation is no &rthan 100, it could be set to allocate spacenatky
to 100x100, but to the outside world it would appeabe whatever size it was resized to, e.g. 38360
etc., but it will have allocated 100x100 internadlyd avoid memory resize slowdowns.

Overloading the assignment operator is another g@odto achieve speedups, where we can copy large
chunks at a time internally instead of byte by bgied if we are using sparse data representatowreuf
matrix data, the amount of data that we will capg inoticeably less, as we are only copying thezera
data instead of the massive chunk of memory.

Dense Matrix (Brute Force)

So to begin with, we start with a basic dense mateéss, which we will call the DMatrix (i.e. Dynden
Matrix). Three essential variables are needed ginb&ith: the pointer to the data, the number déiomns
and the number of rows, as shown below:

class DMatrix

public :
float * m_data; Il rows X cols array of data
int m_numRows;
int m_numCaols;

}. / End DMatrix Class
Code 9. ‘Raw’ starting point — the essentials only

A few helper functions need to be added, so th#éhaldata operations inside the class are man&ged.
example, when the DMatrix class is created, we ned able to specify a default size and maybe the
starting data, to initialize the array. We add sdrmlper functions below, including a constructord add
numerous assert checks.

——

RO
i public :
1+ DMatrix(const int numRows, const int numCols, const float *data= NULL

InitthumRows, numCols, data);

}

~DMatrix()

delete[] m_data;

}

inline int GetNumRows() const { return m_numRows;}
inline int GetNumCols() const { return m_numCols;}
inline float Get(int row, int col= 0) const

b !

i DBG_ASSERT(row>= 0 && row<m_numRows); i

| DBG_ASSERT(col>= 0 && col<m_numCols); |
const int indx = GetDatalndex(row,col);

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

return m_data[indx];

inline float & Set(int row, int col= 0) const

DBG_ASSERT(row>= 0 && row<m_numRows);

DBG_ASSERT(col>= 0 && col<m_numcCaols);
const int indx = GetDatalndex(row,col);
return m_data[indx];

}

inline int GetDatalndex(int row, int col) const

{

const int indx = col + m_numCols*row;
DBG_ASSERT(indx>= 0 && indx<m_numRows*m_numCaols);

return indx;
}
: private
void Init(const int numRows, const int numCols, const float *data= NULL
{
DBG_ASSERT(numRows>= 0 && numRows< 500); // Sanity checks - temp, do we really have size
DBG_ASSERT(numCols>= 0 && numCols< 500); // 0 or>500 array or did something go wrong?
if (humRows== 0) { DBG_ASSERT(numRows== 0 && numCols== 0); }
if (humCols== 0){ DBG_ASSERT(numRows== 0 && numCols== 0); }

m_numRows = numRows;
m_numCols = numCaols;

if (numRows> 0 && numCols> 0)

{

m_data = new floatfnumRows * numCols];
DBG_ASSERT(m_data);

if (data)
{

memcpy(m_data, data, sizeof (float)*numRows*numCols);
else

memset(m_data, 0, sizeof (float)*numRows*numCols);

}

float * m_data;
int m_numRows;

; m_data = NULL; ;
: int m_numCaols; '

: }; /I End DMatrix Class

Code 10. Constructor and sanity checks — stafieges.

If you look at the code above, you will notice thdarge majority of the code is for checks. This i
important, as it is far too easy for a mistakerugab propagate between functions and variables, to
point where it is impossible to track down the egusaving the system in an unrecoverable state. To
reiterate, it is best to assert and stop as soarpasblem appears, so that the situation can alysed
and fixed.

There are various ‘sanity’ checks in the code, White not vital, but give us an early warning that
something might be incorrect. One such examplenafaaly warning assert, is if the matrix size isager
than 500x500, we know something might have gonenwrbefore attempting to allocate memory for
some unexpected size matrix (i.e. 10000x10000, wtdm really be harmful). An additional check would
be that zero size arrays are not created, and lzeseet if the code attempts to, so we can tragdviin

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

and repair it. These checks give us a ‘robust’ atrapper class that defines a set of common acces
functions from which we can swap in a better spara&ix implementation at a later time.

Notice as well that the data and size variable® leen made private. This is deliberate, so thatal
internal workings for the matrix class remain hiddeom the outside world, and use access functions
set or get the information within. Even simple ftioes such as ‘Get’, ‘Set’ and ‘GetNumRows’, can be
used to give us extra checks, and enable us tgehte code internally for any reason (i.e. data
management optimisations). So to reiterate, thablks us to modify and improve our implementation
without actually changing our simulator code, athlig matrix code needs be changed. The dense matrix
class gives a solid test bed from which resultstEmnompared and checks made to ensure optimisation
and improvements work correctly.

STL Map Matrix

Here, we present a practical, exploitable spardexmimplementation that uses the Standard Template
Library (STL). The code gives a skeleton implemgatawhich can built upon, and uses a technique
based on Compressed Row Storage (CRS) (i.e. sitnitae method MatLab uses). The STL map matrix
saves space by using more pointers to represedathe

Matrix using Brute Force Matrix using STL Map

(0%, 1%, 10% Random Fill) (0% Filr

Size: 1 x 1, Bytes Used: 4 Size: 1 x 1, Bytes Used: 36

Size: 10 x 10, Bytes Used: 400 Size: 10 x 10, Bytes Used: 36

Size: 100 x 100, Bytes Used: 40000 Size: 100 x 100, Bytes Used: 36
Size: 1000 x 1000, Bytes Used: 4000000 Size: 1000 x 1000, Bytes Used: 36
Size: 10000 x 10000, Bytes Used: 400000000 Size: 10000 x 10000, Bytes Used: 36

(1% Random Fill)

Size: 1 x 1, Bytes Used: 36

Size: 10 x 10, Bytes Used: 120

Size: 100 x 100, Bytes Used: 6456

Size: 500 x 500, Bytes Used: 89520

Size: 1000 x 1000, Bytes Used: 299028
Size: 10000 x 10000, Bytes Used: 24481620

(10% Random Fill)

Size: 1 x 1, Bytes Used: 36

Size: 10 x 10, Bytes Used: 756

Size: 100 x 100, Bytes Used: 28932

Size: 500 x 500, Bytes Used: 600924

Size: 1000 x 1000, Bytes Used: 2343684
Size: 10000 x 10000, Bytes Used: 229075404

Table 1. Comparing standard brute force matrix mgmusage with that of an STL map one.

/I Sparse Matrix Implementation using STL Maps

#include <cstdlib>
#include <map>
#include <vector>

class DMatrixSTL

public
typedef std:map< size t ,std:imap< size .t , float >> mat_t;

#define STL_CONST const ;
typedef mat_t::const_iterator ro w_iter; :

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

typedef std::map< size_ t , float > col_t;
typedef col_t::const_iterator co |_iter;

DMatrixSTL(size_t numRows, size t numCols, const float *data= NULL
{

m_numRows=numRows;

m_numCols=numcCaols;

DBG_ASSERT(numRows>= 0 && numRows< 1501);
DBG_ASSERT(numCols>= 0 && numCols< 1501);
if (humRows== 0) { DBG_ASSERT(numRows== 0 && numCols== 0); }
if (numCols== 0){ DBG_ASSERT(numRows== 0 && numCols== 0); }

if (data)
{
m_mat.empty();
for (int i= 0;i<(int)numRows; ++i)
{
for (int k= 0;k<(int)numCols; ++k)
{
const float val =data[i+ k*numRows];
Set(i,k) = val;
}
}
}
inline float Get(size_t row, size .t col= 0) const
{

: if (row< 0 || col< 0 || row>=m_numRows || col>=m_numCols) { DBG_HALT; }
: #if 0

/I Destroys sparsity and prevents the use of const

] /I If the element doesn't exist, it inserts one.

return m_mat[row][col];

p #else

b mat_t::const_iterator it;

it = m_mat.find(row);

b float val= 0.0f;

; if (it!=m_mat.end())

{
col_t::const_iterator itc = (*it).secon d.find(col);
if (itc != (*it).second.end())
val = (*itc).second;
}
return val;
#endif

float & Set(size_t row, size t col= 0)
if (row< 0 || col< 0 || row>=m_numRows || col>=m_numCols) { DBG_HALT %
return m_mat[row][col];

void SetToZero()

m_mat.empty();

inline int GetNumRows() const { return m_numRows;}
inline int GetNumCols() const { return m_numCols;}
protected :

DMatrixSTL(){}

public

mat_t m_mat;

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

size_t m_numRows; '
' size_t m_numCols; '

Pk

E /I Declarations for essential helper functions and operators overloading. e.g: '
. DMatrixSTL operator*(DMatrixSTL &a, DMatrixSTL &b); 1
DMatrixSTL Transpose(STL_CONST DMatrixSTL& m); '
' DMatrixSTL operator+ (STL_CONST DMatrixSTL &a, STL _CONST DMatrixSTL &b);]
i inline DMatrixSTL operator- (STL_CONST DMatrixSTL &a, STL_CONST DMatrixSTL &b); '
:. inline DMatrixSTL operator*(float a, STL_CONST DMatrixSTL &b); !

Code 11. STL Map Matrix.

Linear Linked-List Sparse Matrix

Linked-list matrices are an alternative way of tuify a sparse matrix class, and while probablyonet
of the fastest, they do offer large memory savidyse way the linked-list matrix would take advamtag
of sparsity, is by storing only non-zero elementa iist, and access them by it. It offers largeroey
savings but access times can be slow, since wetodadl the index in the list, which can meanatarg
over the list to find it.

This is a good solution for extremely sparse magritut as the matrix becomes less sparse, its memo
overheads and access times grow exponentiallyekamnple, the memory overhead of an empty linked-
list class is can be as little as ‘12 bytes’, natarehow many rows or columns, and whereas a dense
matrix class of size 100x100 usually uses around0@bytes, for a linked-list version, if every ralent
contained a non-zero value, would use approxima&@0/000 bytes. This is due to the linked-list
overheads (i.e. a ratio of 28:1).

So what if 50% is used? Approximately 70,000 bytesld be used then; so as you would expect, the
sparser the matrix, the better, not just with lohkist matrices but any sparse matrix implementatio

In conclusion, linked-lists offer a flexible datmsage solution that can be combined with othethioss

to achieve hybrid configurations, which offer beffeed and memory savings. For example, speeding up
element access times, by using nested linked-bstigst search algorithms, are just some ideas to
explore.

Binary Tree (Search Speedup)

The binary tree version is basically a way of sjregdp the linked-list version by storing the daia
binary tree formation. Whereby, when we searctafparticular index, we search in a binary tree
methodology, hence drastically reducing our setincé.

Hashing

In order to achieve an alternative way of buildingparse matrix class to achieve exceptionally good
access times, ‘hashing’ can be used, whereby iadicee mapped to specific memory addresses using a
hash lookup table and results are achieved in dlmezs instant access times. A typical implementing
allocates a large number of elements, which argetpo a hash lookup table, so each time an eleisient
accessed, the hash algorithm generates the infet wfithin the large array. If there is no elemainthat
address (i.e. if it does not exist), then it isedltb the hash lookup list. Furthermore, becausenairix

is sparse, the large chunk of elements we set abmidd only be a fraction of the size of what asge
matrix allocates.

Nofte
Debugging — When working with solvers and matritesworth investing some time in learning about
the various matrix types, e.g. adding code to clieckingular matrices, and how ‘bad’ matrices dam

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

tested fa. One such example is a matrix where one of itsrievall zero, and understanding what tr
means.

Thinking out of the box

It is worth experimenting and profiling to aim fitre lowest possible memory usage and fastest
achievable access times. Simple things like cachimtjcoherent memory accesses are good things to
keep an eye out for. If you access an element,agox might cache it so itself and its neighbocas be
accessed immediately if the next access is itsatE meighbour.

Memory allocations are another factor, which camseaa major slowdown, so adding in a memory pool
to the array creation/destruction helps with ment®hays and fragmentation. Furthermore, using a
memory manager in conjunction with the sparse matauld enable partitioning of the memory and
keeping track of usage; improving bandwidth andngj\further control.

Cross platform computability is always a side thHatuépr example, working with matrices on the GPU,
in which case the focus needs to be on parallgjittie data and modifying it to take advantage ef th
high number of cores. Further reading on exploitiddP solvers on the GPU is available in (Nguyen,
2007).

STABILITY AND RELIABILITY

One of the biggest problems with writing physiaaudliators is reliable stable contact/collision
information. One such example is an object restiimghe ground. If the object moves within a minimum
threshold, the contact information from previowsties should be reused so that it remains constauaht,
the objects converge and settle down. Some callidaiection algorithms only return a single contact
point between frames. Hence, this contact pointisié@ be stored and a contact manifold over nunserou
frames needs to be built up, which will keep thgpobfrom jittering and give a stable rigid body
stacking.

When writing a simulator, asserts and sanity chebkalld be used whenever possible, especially sheck
for NaNs, which can arise, more often than not, tdube large number of mathematical operationgs Th
will allow the simulation to be halted at the poivitere it went wrong, so an investigation of whantv
wrong at that moment in time can be made, instéémb&ing at debug prints or, even worse, randomly
re-running the code and hoping for it to happeriragad guessing what could have gone wrong.

CONCLUSION

In the scope of this chapter, we introduced LCResslas a practical solution for rigid body constra
simulations, with an emphasis on clarity and sigigli It introduced the basic algorithms and their
implementation so that the reader, having graspegtinciples, can go on to more esoteric consruct

We discussed and compared the two main solver tggegleration and velocity, upon which we outlined
their differences and finally went on to focus be trelocity method in the remainder of the chaptee,
to its effectiveness and simplicity.

The chapter gave special emphasis towards the mepigation design, whereby the reader could go away
and construct a modular flexible simulator with #imlity to extend it over time and add originahjo

types effortlessly; where, the crucial steps nesmysS®r constructing new constraints types using
numerous examples and their Jacobian formulatioe weesented in a simplified clear-cut approach.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

FUTURE RESEARCH DIRECTIONS

This chapter has laid the practical foundationaufing solvers to represent a robust constraintlsitor.
Further work entails numerous enhancements toaserperformance, either by investigating and
implementing more sophisticated algorithms (e.g:c8asive Over Relaxation Method), or taking
advantage of today’s highly parallel processoes @PU or even better the GPU cores).

While we only introduced a few basic constrairit$s ivorthwhile experimenting and creating a wider
range of unique constraints, both equality anduadity. When formulating constraint types, alteivat
derivatives of the equations should be researchddaw they perform (e.g. length squared instead of
length for distance constraints) should be compared

This chapter has only been a springboard into thdvwof solvers and it is highly recommend that the
reader look at the latest literature and exploeestibject.

Possible side projects to continue with might idelu

» Profiling and optimising code.

» Displaying kinetic/potential energy of objects.

» Creating complex constraint structures (bridgegdodls, catapult, ropes).

» Adding further distinctive constraint types.

» Displaying external and internal constraint forces.

» Using varying masses for point-mass distant comsgtsamulations.

* Analysing and optimising sparse matrix operati@mg] explore bandwidth speedups.

REFERENCES

Anitescu, M., & Potra, F. A. (1996). Formulating iymic Multi-rigid-body Contact Problems with
Friction as Solvable Linear Complementarity ProldeGomputey (93), 1-21.

Baraff, D. (1989). Analytical Methods for Dynamig&ilation of Non-penetrating Rigid Bodies.
Computey23(3), 223-232.

Baraff, D. (1994). Fast contact force computationrfon-penetrating rigid bodieBroceedings of the
21st annual conference on Computer graphics aretastive techniques - SIGGRAPH ;9¥ay),
23-34. New York, New York, USA: ACM Press. doi: 1045/192161.192168.

Baraff, D. (1999). Physically based modeling courses ACM SIGGRAPH(2-3).

Catto, E., & Park, M. (2005). Iterative Dynamicdiwiemporal Coherence, 1-24.

Cottle, R. W., Pang, J.-S., & Stone, R. E. (1992 Linear Complementarity Problem

David H. Eberly. (2004)Game Physics. Morgan Kaufmann.

Dongarra, J. (2009). Free Matrix Library List. Reted from
http://mww.netlib.org/utk/people/JackDongarra/laistmnl.

Erleben, K. (2004). Stable, robust, and versatildtibody dynamics animatiotnpublished Ph. D.
Thesis, University of Copenhagen, Copenhage@4April). Retrieved July 23, 2011, from
http://mww2.imm.dtu.dk/visiondag/VDO5/graphicaltgis/kenny.pdf.

Guendelman, E., Bridson, R., & Fedkiw, R. (2003)nislonvex rigid bodies with stackingCM
Transactions on Graphi¢c22(3), 871. doi: 10.1145/882262.882358.

Hagger, W. W. (1988¥Applied Numerical Linear Algebrg. 528).

Havok. (1998). Havok Inc. Retrieved from http://wviaavok.com.

Hecker, C. (1998). Chris Hecker. Retrieved fronpithrishecker.com/Rigid_Body_Dynamics.

Jerez, J., & Suero, A. (2003). Newton. Retrieveanfhttp://www.newtondynamics.com.

Ka”, Z., Nordenstam, M., & Bullock, D. (2003). Adetical Dynamics Systeriork 7-17.

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

Lotstedt, P. (1984). Numerical simulation of timepdndent contact friction problems in rigid body
mechanicsSIAM J. on Scientific Computin§(2), 24.

Nguyen, H. (2007)GPU Gems 3p. 1008). Addison-Wesley.

NVIDIA. (2011). PhysX. Retrieved from http://www.itha.com/object/physx_new.html.

Shabana, A. (1994Lomputational Dynamicsgohn Wiley and Sons, Inc.

Smith, R. (2004). Open Dynamics Engine. Retrievechfhttp://www.ode.org.

Stewart, D., & Trinkle, J. C. (1996). An Impliciirfie-Stepping Scheme for Rigid Body Dynamics with
Coulomb Frictionlnternational Journal of Numerical Methods in Enggaming 39, 2673-2691.
leee.

Vondrak, M. (2006). Crisis Physics Library. Reteelvirom http://crisis.sourceforge.net/.

RECOMMENDED READING

Bourg, D. (2002). Physics for Game Developers, €lliR & Associates, Inc.

Cottle, R. W., and Dantzig, G (1968). "ComplemeitydPivot Theory of Mathematical Programming."
Linear Algebra and Its Applications 1, pp. 103-125.

Dantzig, G. B. (1963). Linear Programming and Egiens. Princeton University Press.

Eberly, D. (2003). Game Physics (Interactive 3Rhrelogy Series), Morgan Kaufman

Erleben, K. (2005). Physics-Based Animation, GimRiver Media

Hecker C. (2000). How to Simulate a Ponytail,htip://chrishecker.com/How_to Simulate_a_Ponytail/

Kokkevis, E. (2004). Practical Physics for Artiatdd Characters.

Kipfer P. (2007). GPU Gems 3, Chapter 33. LCPo#ithms for Collision Detection using CUDA
Murty, K. G. (1988). Linear Complementarity, Lineard Nonlinear Programming. Heldermann Verlag.
Smith, R. (2004). Open Dynamics Engine, In: hitpww.ode.org/

Vondrak, M. (2006). Crisis Physics Engine, Inphitrisis.sourceforge.net/

KEY TERMS AND DEFINITIONS

Degrees of Freedom (DOF): The number of independays an object may move, and consequently the
number of measurements necessary to documentrtemaétics of the object.

Equations of Motion (EOM): Is a set of equationkjch describe how the objects of the system will
move as time changes.

Constraint: Is a limitation or restriction on adgdee of Freedom (DOF) of the system.

Inertia: The tendency of an object in motion tmaén in motion, and of an object at rest to renain
rest.

Mass: A measure of inertia, indicating the resiséaof an object to a change in its motion; inatigda
change in velocity. A kilogram is a unit of mass.

Centre of Mass (COM): Also known as the centrgrakity, and represents a centroid point where the
mass of an object is balanced in all directions.

Weight: A measure of the gravitational force oroaject; the product of mass multiplied by the
acceleration due to gravity (equal to 9.8 m peosd@er second).

Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers

Moment of Inertia: The resistance of a body tongeaits state when rotating.
Acceleration: The rate of change of velocity.
Velocity: The rate of change of position.

Newton’s Laws of Motion: The principles, formuldtby Sir Isaac Newton (1642-1727), which state
how objects move.

Linear System: A linear system is a collectiofirméar equations.

