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ABSTRACT 
This chapter introduces Linear Complementary Problem (LCP) Solvers as a method for implementing 
real-time physics for games.  We explain principles and algorithms with practical examples and 
reasoning. When first investigating and writing a solver, one can easily become overwhelmed by the 
number of different methods and lack of implementation details, so this chapter will demonstrate the 
various methods from a practical point of view rather than a theoretical one; using code samples and real 
test cases to help understanding. 
 
INTRODUCTION 
With the ever-increasing visual realism in today’s computer-generated scenes, it should come as no shock 
that people also expect the scene to move and react no less realistically. With the computational power 
available today, the ability to run physically accurate real-time simulations is required to hold a players 
attention. 
 
Simulating scenes, using physics-based methods, is important because it enables us to produce 
environments that respond to unpredictable actions and simulate situations that are indistinguishable from 
real life, e.g. buildings collapsing.  However, it is very difficult to simulate reliably, large number of 
objects and complex articulated structures as shown in Figure 1. 
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Figure 1.  Simulation screenshots demonstrate stable stacking (left), articulated joints for characters 
(middle) and chains of objects (right).   
 
Writing a flexible, scalable rigid body simulator is a challenging task because you need strong 
background knowledge in programming and Newtonian mechanics. While there are several approaches 
(i.e. penalty methods, impulse methods), solvers offer numerous advantages, such as requiring less user 
tuning and the ability to handle highly coupled configurations (e.g. large stacks or chains). 
 
The reader, after being introduced to how solvers operate and how they are constructed, is introduced to 
dependent techniques; such as sparse matrices. And while we try and explain everything from the bottom-
up, it is still required that the reader is at least familiar with basic Newton’s laws and calculus techniques. 
After completing this chapter, the reader should have a basic understanding of what a solver is, how to 
implement one, and how to use it. 
 
 
BACKGROUND 
Rigid body dynamics 
Rigid body dynamics is a well understood and documented field, and as such, will not be covered here. 
For background information, we recommend reading (Baraff, 1999; David H. Eberly, 2004; Hecker, 
1998), which gives details on unconstrained dynamics and concepts such as body mass, acceleration, 
velocity and the equations of motion, which we use throughout this chapter. 
 
While we introduce the reader to writing a practical LCP solver, there are also commercial and open 
source engines, which can be taken advantage of, and we would recommend them for the purposes of 
background knowledge. Some well-known LCP simulation engines are: 
 

• Open Dynamics Engine (ODE), (Smith, 2004)  
• PhysX (NVIDIA, 2011) 
• Newton Game Dynamics (Jerez & Suero, 2003) 
• Havok (Havok, 1998) 
• Crisis Physics Engine (Vondrak, 2006).  

 
Block matrix methods 
The equations that make up our dynamic system and constraints can be large, cumbersome, error-prone 
and difficult to manage, and to help alleviate this problem, we represent them in matrix form. This gives 
us a more manageable high-level view of the system and its components, which is more intuitive to work 
with.  
 
In our simulator, a large majority of the computation cost is in calculating an inverse matrix for our 
solution. As with real numbers, when you have ‘ax=b’ you can solve for ‘x’ by dividing both sides by ‘a’ 
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to get ‘x=b/a’, which is acceptable, as long as ‘a’ is not zero. Similarly, when working with matrices, we 
formulate the equation ‘AX=B’, and divide both sides by ‘A’ to get ‘X=B/A’. But instead of dividing 
both sides by ‘A’, we calculate the inverse of ‘A’ (i.e. 1A− ) and multiply both sides, to achieve the same 
result. 
 
This chapter uses numerical methods to calculate the inverse of the matrix, which is central to achieving a 
usable solver. However, on occasions, we are unable to calculate the inverse, i.e. we get a singular matrix, 
similar to a divide by zero with real numbers. When this occurs, usually some ill-conditioned 
configuration has developed or perhaps some numerical problem has occurred, which we detect as a 
singular matrix (i.e. determinant is zero) and we determine why it has arisen so that we can fix it and 
prevent it happening again. 
 
 
Lagrange Multiplier Formulation 
We have the unconstrained dynamic equations of motion from classical mechanics, which describes how 
the rigid bodies move, and a set of constraint conditions – which describe how they cannot move. We 
then combine these two equations and solve the unknowns by using a powerful technique of multivariable 
calculus, known as ‘Lagrange multipliers’. 
 
We create the equations for our system using Newton’s second law ‘f = ma’, in combination with 
constraint equations which we form through differentiation and substitution to establish a combined 
problem, which is solved using Lagrange’s multiplier methods. 
 
 
Equations of Motion 
Each unconstrained body has six Degrees of Freedom (DOF), three for translation and three rotation. For 
a group of rigid bodies (m), the total DOFs is 6m. Since constraints restrict the relative motion, the total 
number of DOFs of a group of rigid bodies, with constraints, is less than 6m. The rigid body dynamics in 
collaboration with the constraint configurations form the Equations of Motion (EOM), that describe how 
the group of rigid bodies will move as time changes. 

 
We can categorise the EOM into two types: Maximal and Reduced coordinates. 
 
Maximal coordinates use Cartesian space, so each body has 6m state variables, and requires 6m-n 
constraint equations (where n represents the number of constraints). These constraints explicitly remove 
extraneous DOF through their formulation. For further reading on explicit constraint methods see 
(Shabana, 1994), and further details on maximal coordinate methods are available in (Baraff, 1999; David 
H. Eberly, 2004; Hecker, 1998). 
 
Reduced coordinates use an implicit incorporation of the constraints to formulate the equations of motion.  
The system uses n state variables to represent the various DOF, so for example, if we have a single object 
which can only rotate around the ‘y’ axis (no translation or x-z rotation), then the system state only needs 
a single state variable to represent the system (i.e. the object’s angle). It has a major drawback, whereby 
for each unique configuration we need to derive by hand a set of equations for that particular 
arrangement. 
 
Both Maximal and Reduced coordinate methods are able to run in ‘O(n)’ time. Maximal coordinates are 
more popular because of their modularity and straightforwardness to understand and implement. 
Although maximal coordinates operate in Cartesian space, we still sometimes need to use awkward 
conversions, to convert between constraint and Cartesian space. Maximal coordinates can drift due to 
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numerical errors and integration inaccuracies, in addition they need a minimum of 6m state variables to 
represent the system, so optimised methods need to be used to reduce memory and bandwidth impacts 
(sparse matrices). Due to the modular flexible nature of maximal coordinates, we use this method in this 
chapter, so we can formulate constraints once, and use them again and again for various configurations. 
 
Simulation Approaches 
Three main types of constraint methods exist: Penalty methods, Impulse methods and Global methods. 
 
Penalty methods (springs) – are the easiest technique for formulating constraints, whereby the violated 
constraint error is fed back into the system as restoring forces to correct the error. They have the ability to 
be simple, fast and intuitive, and can be combined with other methods to add controllability. Their 
downside is that the constraints rely on error feedback forces, and suffer from stability issues, which 
require small time-steps (offline) or computationally expensive integration techniques to remain stable. 
The reader can refer to (Kaˇ, Nordenstam, & Bullock, 2003) for a practical example of penalty methods 
being used to create constraints. 
 
Impulse methods (velocity impulses) – use instantaneous force changes, known as velocity impulses to 
implement constraints. These velocity impulses are repeatedly applied to each constraint, where you solve 
one constraint after the other, re-evolving the system to satisfy all constraint conditions, until the system 
converges, or you reach a maximum update limit. Further reading can be found in (Guendelman, Bridson, 
& Fedkiw, 2003) which presents a realistic impulse-based simulator with stacking. 
 
Global methods (analytical methods) – which we use and apply in this chapter, involve computing the 
exact magnitude of force that will satisfy the constraints at every step of the simulation. It is accurate and 
requires minor parameter tuning by the user and can maintain stability for relatively large integration 
steps. It works, fundamentally, by constructing a linear system of the form. 
 
SOLVER (LCP) 
The Linear Complementarily Problem (LCP) is a special kind of problem that aims to find a solution to a 
set of equations, subject to constraint limits. The type of LCP we focus on in this chapter is the box-
constrained LCP, which aims to find a solution to the form ‘y = Ax+b’, subject-to limits on ‘y’: 
 
 

0

0

0
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lower upper
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y x x

y x x x
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We can broadly classify LCP solvers into two method types, iterative methods and pivoting methods. 
 
Pivoting methods use recursion; where the solution to the problem depends on solutions to smaller 
instances of the same problem, which can be solved in a finite number of steps. While pivoting methods 
can be fast, it is our experience that for a large number of constraints, they can produce erroneous results 
for perfectly valid systems due to floating point errors. Further reading and examples of pivoting methods 
are Lemke’s algorithm used in (David H. Eberly, 2004), and Dantzig’s algorithm, used in (Baraff, 1994).   
 
Iterative methods alternatively do not terminate but converge on a solution finitely, where convergence 
depends on a number of factors such as the initial starting value. In addition, because iterative methods 
move closer to the solution with every update, if they were interrupted early, the current result can be 
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good enough for the simulation to continue. Furthermore, we can take advantage of the starting guess and 
coherency between frame updates to accelerate convergence, by feeding the previous frame’s solution to 
the next. This property makes them ideal for real-time applications, where we can break out at varied 
times, trading accuracy for speed. Finally, iterative methods in practice are able to find acceptable results 
in ill-conditioned or singular configurations; due to contacts or overly constrained systems that allow the 
simulation to continue and recover. 
 
Further reading about LCP methods for solving can be found in (Cottle, Pang, & Stone, 1992). 
 
To restate, we use iterative methods because: 

• The stopping criteria can be adjusted to trade accuracy for performance. 
• In practice, they are more stable and reliable. 
• They are simple to implement compared to other direct methods. 
• There is a greater potential for optimisation (exploiting matrix sparsity for speedups). 

 
Two popular iterative methods for solving systems of linear equations are ‘Gauss-Seidel’ and the ‘Jacobi 
method’, which can be modified to handle equality constraints for our complementary problems, such as, 
contacts. For this chapter, we use a modified ‘Gauss-Seidel’ algorithm, called the ‘Projected Gauss-
Seidel’, which offers a simple and intuitive implementation with good convergence rates. An in-depth 
explanation on how systems of linear and complementary equations are solved can be obtained by reading 
(Hagger, 1988), (Cottle et al., 1992) and (Erleben, 2004), also for a more detailed explanation of the 
Gauss-Seidel and its differences to projected Gauss-Seidel, see (Catto & Park, 2005). 
 
The Gauss-Seidel equation is shown below, followed by its implementation in code. 
 
 1

( ) ( 1)
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where the subscript i and j indicates the column and row of the matrix elements from our linear equation 
Ax=b. It works by starting from some initial value (e.g. 0), then iteratively updating the answer repeatedly 
using the result from the previous step to converge on a solution.  In the equation above, we have xk as 
our current result, and xk+1 as the next. 
 
The convergence on an acceptable answer depends upon the size and complexity of the configuration, 
where it can take anywhere from two or three iterations to hundreds, depending on the topology and 
initial starting value. For example, highly coupled configurations such as stacks of objects or long chains 
take longer to converge than less densely coupled ones. 
 
We add an extra step to our vital Gauss-Seidel method to incorporate boundary conditions and enforce the 
complementary constraints with an additional projection step: 
 
 max(min( , ), )upper lower

j j j jx x x x=  (3) 

 
Stop Condition 
The sample code uses a fixed iteration count, but a check can be added to determine if the solution is 
within a certain tolerance and provide an early breakout. We can calculate this value using the equation 
below: 
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Acceleration or Velocity Level 
We can broadly classify LCP solvers into two main types, acceleration-based (Baraff, 1989; 1994; 
Lötstedt, 1984) or velocity-based (Anitescu & Potra, 1996; Stewart & Trinkle, 1996), where the solver is 
classified according to the level it operates on to solve its constraints. In the next few sections, we review 
both the acceleration and velocity level solvers, outlining their similarities and differences, but towards 
the end of this chapter, we will focus on velocity-based solvers due to their added simplicity and 
practicality. 
 
We give a brief comparison of both methods and review their advantages and disadvantages. To begin 
with, we demonstrate the two main sets of equations and the steps for formulating constraints at the 
various levels to illustrate their differences.   
 
 

Velocity 
1 1Jq 0T

extJM J JM Fλ− −+ + ≥ɺ  
using 

1
1 ( )∆n n ext cq q M F F t−

+ = + +ɺ ɺ  
T

cF J λ=  
 

Acceleration 
1 1Jq 0T

extJM J JM Fλ− −+ + ≥ɺ ɺ  
using 

( )1
1n ext cq M F F−

+ = +ɺɺ  
T

cF J λ=  
 

 
The constraint formulation steps are as follows:  
 

Velocity 

1. Create positional constraint C. 
2. Differentiate C with respect to time to obtain 

the velocity constraintCɺ . 
3. Isolate and extract the Jacobian fromCɺ . 

 

 

Acceleration 

1. Create positional constraint C. 
2. Differentiate C with respect to time to obtain 

the velocity constraintCɺ . 
3. Isolate and extract the Jacobian fromCɺ . 
4. Solve for the derivative of the Jacobian (Jɺ ) 

w.r.t. time. 

 

 
From the constraint formulation steps above, the reader may notice that the initial steps are very similar, 
but the acceleration level requires additional work to calculate the Jacobian derivative. The velocity 
approach is basically a subset of the acceleration level, where it moves the acceleration problem into the 
LCP integration step in order to obtain a discrete problem, having velocities as unknowns rather than 
accelerations. 
 
The velocity-based method has the slight advantage of only having to compute the first differential for the 
constraint equation due to the velocity method not needing the Jacobian derivative to calculate the 
unknowns. Earlier solvers were formulated at the acceleration level, but had problems where friction 
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constraints could produce unstable systems. Later, the problem was modified so it could be solved at the 
velocity level where this problem was solved. 
 
 

 
Figure 2.  Basic four-step breakdown of acceleration and velocity based methods.  
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Matrix version of Newton's second law, but splitting the total forces into two parts. 

Construct constraint equation C(q) and differentiate it twice for acceleration level,  
and once for velocity level. 

Using the Jacobian (J) and Lagrange multiplier () we are able to solve  
for the unknowns. 

Arranging the equation into the form 'Ax=b', with  as the unknowns, we can use 
linear methods to invert the matrix and solve for the system of equations, and then  
reinsert them back into step 3. 
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If principles of how to resolve constraints at the velocity level are understood, then the knowledge is there 
to implement it for the acceleration level (and vice versa). For the remainder of this chapter, we will focus 
on deriving and implementing methods for the velocity level, and where appropriate, mention any 
extraneous details that might be relevant to the acceleration level. 
 
 
CONSTRAINTS 
Overview 
The formulation of the equations we use for our simulator can be broken down into four easy steps as 
shown in (Hecker, 1998) and reproduced in Figure 2. We introduce the steps briefly here, showing how 
the solver equations fit together, to attain a physics-based simulator. Even though they may not be 
completely understood initially, we reintroduce them again with further details and applied examples as 
we advance through the chapter. 
 
Equality and Non-Equality Constraints 
There are two types of constraints, Equality “==” and Inequality “>,>=,<,<=”.  Examples of equality 
constraints are rigid-ropes and ball-joints, while inequality constraints would be contacts and collisions. 
 
Equality constraints have a fixed solution and cannot be varied along the constraint direction. They’re 
formed by setting the constraint condition ‘c’ to zero, using the equality sign. 
 
Inequality constraints can have numerous solutions and are formed by using a greater than or equal 
operator in constraint equations. 
 
In the steps mentioned earlier for solving the unknown constraint values, we used an equal sign for
A bλ = . For inequality conditions, we modify our linear solver to handle linear complementary 
problems. The modification adds the condition' '≥ , and only accepts values greater or equal to zero, 
essentially clamping λ so it is always positive: 
 

 
Due to inequality constraints having multiple results, we can check if we need them before we add them 
to our solver, i.e.: 
 

if 0c ≤ : 
     add 0c ≥ɺ to constraint solver 
else 
     ignore 

 
Jacobian 
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Forward kinematics enables us to define functions that convert between Cartesian space (i.e. positions and 
orientations) to constraint space, and the Jacobian represents how this Cartesian-constraint space 
relationship changes with respect to time, (e.g. Cartesian-constraint space velocity relationship). 
 
The Jacobian gives the instantaneous transformation between the constraint velocities and the rigid body 
velocities. Where, for objects in 3D, each rigid body has six DOF, which represents the three linear and 
three angular velocities, for (m) rigid bodies we are able to form a (6m) column vector containing all the 
rigid body velocities, in addition to our (n) constraints, to form a (6m x n) Jacobian matrix, describing 
how all the objects in our system are allowed to move. 
 
Jacobian is a matrix function of the form: 
 c J q=ɺ ɺ  (5) 
 
where qɺ  (linear and angular) Cartesian space velocities andcɺ  the constraint velocities.  
 
We can also express qɺ  as its separate angular and linear velocity components: 
 
 [ , ]q v ω=ɺ  (6) 
 
for each body, qɺ  is a 6x1 Cartesian velocity vector, (3x1) linear vector and (3x1) rotational vector 
stacked together. 
 
We can also write: 
 [ ] ,  vJ J Jω=  (7) 
i.e. 
   

  
vv J q

J qωω
=
=

ɺ

ɺ

 (8) 

 
As we said earlier, a single unlinked object moving in 3D, can move in six possible ways, three linear and 
three angular.  If you wanted to constrain the object from moving in a certain direction, the ‘z’ direction, 
for example, then you would set the ‘z’ velocity to zero, effectively limiting translation movement to the 
x-z plane. This is a simplified example of how a Jacobian works, and describes how constraints operate to 
remove DOF to achieve a desired motion trajectory. While the Jacobian is at the heart of our analytical 
method, it allows us to relate the classical equations of motion (f=ma) with Lagrange’s multiplier to solve 
systems of constraints.  Later in the chapter we give numerous examples on how to describe and derive a 
mixture of common constraints and their Jacobian. 
 
Because the Jacobian is central to our constraint formulation, we will spend a bit more time explaining its 
mechanics in detail with examples to give a rock-solid understanding. The Jacobian, sometimes called the 
constraint Jacobian, is a matrix which allows us to specify which motions are not allowed. The number 
of rows of the matrix determines the order of the constraint or the number of degrees of freedom removed 
from the system. For most constraints we calculate J on a frame by frame basis as it depends on the 
body’s positions and orientations. 
 
  

  
 

Change Input In
J

ChangeOutput Out

∂= =
∂

 (9) 
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We can combine Jacobian matrices to formulate more complex ones, by which we mean, we can 
construct simple constraints and combine them to build more difficult ones. 
 
To repeat the most important equation of this section, the Jacobian velocity constraint is shown again 
below in Equation (10), where qɺ  is the system body velocities, and cɺ  is the derivative of the positional 
constraints c with respect to time, and produces constraints by removing degrees of freedom from the 
system. 
 
   J q c=ɺ ɺ  (10) 

To derive the Jacobian, we need to obtaincɺ , which we attain by constructing a positional constraint ‘c’ 
and differentiating it. The positional constraint is constructed by representing how the body is allowed to 
move with a kinematic equation such that when it is satisfied, it evaluates to zero: 
 
 0c =  (11) 

If we differentiate our positional constraint equation (c ) with respect to time, it will describe the 
constraint velocity properties. Also as ‘c’ is equal to zero, the derivative should be zero: 
 
 0c =ɺ  (12) 

Since we have said that c and cɺ  will be zero and have explained that the Jacobian has six elements for 
each body which constitute how the six velocity components change with respect to time, we can 
conclude that any non-zero values in  J  will affect the corresponding body velocities. Remember that 
these are relative to the body’s point of reference (its position and rotation at that instance in time and can 
need re-calculating as the object moves). 
 
Using this knowledge, the Jacobian can be calculated in three straightforward steps; firstly, by 
constructing an equation for the positional constraints, secondly by differentiating it with respect to time 
to get the velocity properties, and finally by isolating and extracting the Jacobian. 
 
In some cases, you can compose the Jacobian constraint matrix by visually looking at the system, but for 
more complicated constraint schemes, you will need to follow the steps above, whereby you’ll find that 
the ability to construct the Jacobian gets easier with practice. We give examples of simple Jacobian 
constraint matrices in the next section.   
 

Note 

When a constraint only affects a single object, and does not affect or rely upon any other objects, they are 
referred to as ‘unary constraints’, whilst a constraint involving another point-mass or rigid body is 
termed a ‘binary constraint’. In addition, the Jacobian for binary constraints is usually the same but 

reversed. 
 
 
Constraint Equations 
We now focus on explaining how we resolve the constraints at the velocity level and the formulation of 
our system of equations that we use to represent our procedure. Even though we focus on the velocity 
level, we can apply the same principles and practice to the acceleration level without too much effort. 
 
During the simulation update, we calculated a set of constraint forces, which we combined with the 
external forces, to keep the constraints valid. The main equation, which we construct and use to determine 
these cancelling constraint forces, is shown in Figure 3: 
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Figure 3.  Lagrange multiplier modified to fit a system of linear equation to solve our constraints. 
 
The equation can be initially overwhelming, but once the reader understands what it does and how it 
works, it is very satisfying and rewarding. The LCP equations are usually presented in the form: 
  
 

, 0,  0T

b Ax q

b x b x

= +

≥ =
 (13) 

 
This may seem straightforward, but notice the complementary conditions (‘b’ is 0 when ‘x’ is not and 
vice versa) and the non-negativity conditions (‘b’ and ‘x’ are >= 0), which is what makes the equations so 
useful and powerful. 
 
But where does this equation come from, and what does it mean? We will start at the beginning and 
introduce the problem and how this solves it for us. 
 
It might not be obvious, but if a snapshot of a rigid body simulator taken at any moment in time, the 
system can be represented, using a set of equations that illustrates how it behaves. If the objects are 
connected (e.g. through contacts or joints), then their individual EOM will be connected, and so we build 
up a single large equation (i.e. using matrices). This large equation follows a set of rules, which represent 
how the system of objects can move, allowing us to predict how the system will change with time.   
 
Our formulation of a solver relies heavily on the principles of linear algebra. To restate, a basic system of 
linear equations in matrix form, would be: 
 
 Ax b=  (14) 
 
where we know ‘A’ and ‘b’, and we are trying to find ‘x’. ‘A’ is a symmetric, positive definite sparse 
matrix. The linear system can have three possible outcomes: 
 

• A single solution which converges  
• No solution  
• Infinite solutions.  

We use the linear equation as the starting foundation from which we build our solver, expanding the basic 
linear equation above so that it can be used for equality and inequality constraints, i.e.: 
 
   0Ax band x≥ ≥  (15) 
 

JM  J   + J(v  + M  F   )  > 0
-1 T 

n ext 
-1 

A x b 
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(From our ‘Ax = b’ linear equation above, if ‘Ax’ is not equal to ‘b’, then we have to reformulate it into 
something more complex, i.e. ‘Ax-b = s’, and if we make some assumptions, such as mentioned above, 
‘Ax>=b’ and ‘x>0’, then we have introduced some constraints.) 
 
The large equation used earlier actually comes from basic algebraic principles. Since we are focusing on 
the velocity level, we start with the simple velocity integration equation and convert it through 
substitution and common sense into the equation above.  
 
At each time-step, we can use the Euler integration method to predict how the velocity will change, based 
on the applied acceleration and time-step. We use this updated velocity to predict how our position will 
change during our time-step, e.g. 
 
 1

1 1

v v

v
n n

n n

a t

x a t
+

+ +

= + ∆
= + ∆

 (16) 

 
According to Newton’s second law (i.e. f=ma), we are able to modify our velocity update to: 
 
 1

n 1 nv  v  M F t−
+ = + ∆  (17) 

 
 
With the velocity integration scheme, we extrapolate it to solve for the applied acceleration changes, 
which are proportional to the applied forces. 
 
It is important to comprehend how we go from basic velocity integration to the constraint equation.  
Whereas a majority of the texts skim over the subject, we will give a step-by-step justification in Figure 4. 
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Figure 4.  Four steps for deriving the constraint equation from the velocity integration step. 
 
The two main steps in Figure 4, are 2 and 4, which we describe further. 
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In Step 2, we integrate our Jacobian into the velocity equation by multiplying it across both sides.  
Recalling that the Jacobian defines how our objects will move, adding the Jacobian vector enables us to 
define the movement of our objects. 
 
Step 4, is one of the biggest steps, as it brings together the equations for classical mechanics and the 
Lagrange multiplier through the use of the Jacobian. We arrive at our final equation by splitting the 
constraint force into its magnitude and direction. (This is a very noteworthy step, and should be 
remembered for later when we reuse it to reinsert our solved values). 
 

1JM JT− is referred to as the effect mass matrix, and we give it the symbol ‘K’. For basic cases we can pre-
compute the effective mass matrix and simplify it to show additional properties in the way the constraint 
behaves. 
 

Note 

When a solution for lambda (λ ) is obtained, it can be used to give additional information about the 
system, e.g. the stress or strain between constraints. 

 
Additionally, during implementation, the 1 TJM J−  matrix should have no zeros in the diagonal. 

 
 
Solving the equations gives us lambda, which when multiplied by our Jacobian, gives us the constraint 
forces. We add the computed constraint forces to the applied external forces before integrating. This 
ensures that the constraints will constantly stay valid, even when large external forces are applied. 
 
The rigid body matrix representations for our simulation are shown in Figure 5; where we collect together 
similar attributes, such as position and orientation, linear and angular velocities, into groups of matrices. 
 
We use quaternions to represent our rigid body’s orientation, and hence our incremental update to angular 
velocity, using: 

 1

1

2n n nq qω+ =ɺ ɺ  (18) 

 
So to achieve this same result with a matrix multiplication, we need to use a special matrix to represent 
our quaternion orientation. We refer to this matrix as the ‘Q’ matrix, which is inside the ‘S’ matrix and is 
of the form:   
 

1

2

x y z

w z y
Q

z w x

y x w

− − − 
 − =
 −
 −   

 
where ‘w, x, y, z’ are scalar and vector components of the quaternion. To phrase it another way, the Q 
matrix is essentially a sub-matrix representing the rotation using quaternions. (We highlight the ‘Q’ 
matrix above inside the ‘S’ matrix formulation). 
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Mass Matrix (Angular and linear components).

Force Matrix (Linear Force and Angular Force, aka Torque).

Velocity Matrix (Linear and Angular Velocitys)

S Matrix (combine quaternion matrix and linear components).

Position Matrix (Angular component is a quaternion).

S = 

1     0     0     0     0     0 
0     1     0     0     0     0 
0     0     1     0     0     0 
0     0     0     q     q     q 
0     0     0     q     q     q 
0     0     0     q     q     q 
0     0     0     q     q     q 

x 

Q Matrix 

y z 

w z y 

z w x 

y x w 

q    =    q 1 
2 n+1 n 

X = 

p    0    0    0     0     0 
0    p    0    0     0     0 
0    0    p    0     0     0 
0    0    0    q     0     0 
0    0    0    0     q     0 
0    0    0    0     0     q

X = 
p    0    0     
0    p    0  
0    0    p 

6 D.O.F (3 Linear, 3 Angular) 3 D.O.F (3 Linear) 

x 

y 

z 

x 

y 

z 

x 

y 

z X    = X  + tSVn n+1 

Exclude S if no Rotation 

V = 

v    0    0    0     0     0 
0    v    0    0     0     0 
0    0    v    0     0     0 
0    0    0         0     0 
0    0    0    0          0 
0    0    0    0     0     

V = 
v    0    0     
0    v    0  
0    0    v 

6 D.O.F (3 Linear, 3 Angular) 3 D.O.F (3 Linear) 

x 

y 

z 

x 

y 

z 

x 

y 

z 

F = 

F    0    0    0     0     0 
0    F    0    0     0     0 
0    0    F    0     0     0 
0    0    0         0     0 
0    0    0    0          0 
0    0    0    0     0     

F = 
F    0    0     
0    F    0  
0    0    F 

6 D.O.F (3 Linear, 3 Angular) 3 D.O.F (3 Linear) 

x 

y 

z 

x 

y 

z 

x 

y 

z 

M = 

m   0     0    0     0     0 
0     m   0    0     0     0 
0     0    m   0     0     0 
0    0     0     I     I     I 
0    0     0     I     I     I 
0    0     0     I     I     I

xx xy xz 

yx yy yz 

zx zy zz 

M = 
m   0     0 
0     m   0 
0     0    m 

Rotation Inertia Matrix 

6 D.O.F (3 Linear, 3 Angular) 3 D.O.F (3 Linear) 
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Figure 5.  Matrix Configuration and Contents (Linear and Angular Components). 
 
Traditionally, using the Euler integration method, we would have integrated each component (linear and 
angular) for each rigid body using Equations (19) and (20). 
 
 

1

1 1

1
∆

 ∆

n n ext

n n n

v v F t
m

x x v t

+

+ +

= +

= +
 (19) 

 
 

1

1 1

 ∆

1
   ∆
2

n n n InvWorld

n n n n

I t

q q q t

ω ω ω

ω

+

+ +

= +

= +
 (20) 

 
We move our rigid body into matrices and perform the integration update using Equations (21) and (22) 
below. 
 

 
1

1n n extu u t M F−
+ = + ∆  

(21) 

 1 1n n ns s t S u+ += + ∆  
(22) 

 
This is the basic integration without any intervention from our constraint forces, which we add into the 
modified block matrix integration: 
 
 1 1

1  (    )T
n n extu u t M F t M J x− −

+ = + ∆ − ∆  (23) 
 
 

1 1  n n ns s t S u+ += + ∆  (24) 
 
where 1( )TtM J x−∆  uses the cancelling force magnitude in ‘x’ to feedback into the integrated update and 
keep the constraints valid. The following code snippets show the method implemented in code. 
 
    // Basic Integration without constraints or collisi ons 
    u_next = u + dt*MInverse*Fext; 
    s_next = s + dt*S*u_next;  

Code 1.  Basic Euler integration step using matrices. 

 
     // Basic Integration without constraints or collisi ons 
     u_next = u + dt*MInverse*Fext - MInverse*Jt*x;  
     s_next = s + dt*S*u_next;  

Code 2.  Modified integration step with our added constraint forces. 

 
Block matrix methods make it possible to group together system state variables, such as forces, velocities 
and positions, into intuitive manageable pieces and reduces the amount of code disarray. In the sample 
above, we use a matrix to represent the position and rotation of each body; alternatively, you can exclude 
this fragment and merely solve for the constraint forces, then apply them as you would to the simulator. 
The reasons for this may be because the constraint solver is part of a larger system where objects are 



Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers 
 

unable to be merged into matrix formation, or because it is easier to manage data some other way, due to 
optimisation. 
  
Whilst we use methods to combine angular and linear components into single larger matrices, it can 
sometimes be more efficient to separate them into individual matrices so as to disable and enable 
rotational components for debugging, or alternatively develop a point mass simulator which contains no 
rotational components. For example, the mass matrix is a combination of the linear and angular mass 
components (centre of mass and inertia tensors), which could be broken up into two separate matrix 
functions. 
 
Initially, matrix methods in combination with analytical solutions can seem like more work compared to 
the penalty and impulse methods, but the results give us a reliable, flexible simulator, which requires little 
or no user tweaking. 
 
Our solver uses classical mechanics in combination with Lagrangian multiplier techniques, so we are able 
to formulate systems of equations to calculate the necessary forces to apply at each frame and enable our 
constraints to remain legal. For example, a ball resting on the floor has a downward force applied to it, 
known as gravity. We cannot allow this downward force to update the velocity and let the ball move 
translate downwards. Hence, we add a contact constraint to the system to prevent this penetration 
violation. This constraint would produce a cancelling upward force, keeping the ball resting on the 
ground. The complementary part of the solution is when the ball is falling with velocity, and we need to 
add an impact force, causing the ball to bounce upwards and not stick to the ground (it can move up but 
not down). 
 
 
Algorithm Steps 

1. Apply forces and torques (i.e. from springs, gravity, etc.). 
2. Build matrices for rigid body masses/velocities/positions. 
3. Build Jacobian constraint matrices representing various constraints. 
4. Evaluate your system by solving for lambda. 
5. Build constraint forces using lambda and Jacobian matrices. 
6. Calculate and apply constraint forces. 
7. Integrate and update as usual. 

 
void  Simulation_c::Update( float  dt) 
{ 
    // Add gravity, forces from springs etc. 
    ComputeForces(dt); 
 
    // Calculate constraint forces and apply them to ou r system 
    ComputeJointConstraints(dt); 
 
    // Step forwards in time - integration done inside ComputeJointConstraints(..)     
    // using block matrices, but you can disable it  and integrate using 
    // an alternative integrator 
    //Integrate(dt); 
}  

Code 3.  Steps for updating code. 

 
Note 

Making objects immovable by setting their mass to zero or making their mass near infinite (e.g. 
10000000) can crash the simulator. This is because the solver needs to invert the matrix, so large or zero 
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values can result in a non-invertible matrix. Large values may not crash the simulation, but it can require 
a very large number of iterations to find its inverse solution. 

 
 

 
 
 
‘1D’ Numerical Example 
The best way to get familiar with solvers is practice, which we now do using simplified straightforward 
test cases that we analyse with common sense and understanding. Common mistakes to keep an eye out 
for initially, are errors due to wrong number sign (+ instead of a -) or invalid divide by zero troubles.   
 
We start with simple 1D examples, where we do not need to worry about rotation, just the translation, and 
can focus on the force magnitudes and directions. Whereby, our matrix formulations will be greatly 
simplified (e.g. the mass matrix in 1D is cut down to a single variable for each object), so we can evaluate 
the equations by hand. It is also recommended that this simplified approach is used to work through 
additional problems which will demonstrate first-rate principles of how constraint solvers achieve reliable 
simulations, such as jitter free stacking.   
 

 
 
Figure 6.  Numerical Example   
 
The example shown in Figure 6 is constructed by taking a single object and letting it rest on an 
immovable surface. Then when we apply downward force due to gravity, the top object will continue to 
stay fixed. Since it is only a straightforward example, we use a very simple uncomplicated Jacobian for 

A 

B 

Immovable 

Only Direction of Movement 

M = 
-1 

1 
m a 

1 
m b 0 
0 Immovable, hence 0 

1 = 0 

= 0 
0 1 
0 

J = [ 1  1 ] 

Number of Bodies (2) 

Number of Constraints (1) 

v n = 0 
-1 F ext = -1 

-1 

M -1 J J T = 0 
-1 

0 
0 1 
0 [ -1  0 ] 

[ 1  0 ] 
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-1 = 

= [ -1 ] 

b = J ( ) v n M -1 
+ F ext 
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0 
-1 

0 
0 1 
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-1 
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-A x = b 
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[ 1 ] - = [ -2 ] 
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Solved it, so but the results back into our system. 

F constraint = J T F constraint 

= 
0 
1 [ 2 ] 

F ext F constraint + F total = 

= = -1 
-1 + 2 = 1 

1 

m a =1 gravity=-1 dt=1 

2 

Our new force which 
stops the objects intersecting 

2 
2 
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our constraint, which prevents any movement in the single-axis direction. Of course, to make it a little 
more interesting, the top object also has an internal velocity, so the calculated resultant force, when 
integrated into the velocity, will cancel it out. Hence, our constraint solver keeps our resting object on the 
surface as the simple constraint demands. 
 
If the question; why do we get [1,1] for the resulting force and not [0,0], is asked, this is as we mentioned 
earlier. Our object has an initial velocity of [-1,0], so a positive force is necessary to cancel out this 
downward velocity and keep our constraint valid. If we have had zero velocities, the downward force 
would have cancelled out, leaving us with [0,0]. 
 
It should be well-known by now that the solver needs to run each frame before the integration step, which 
updates the velocities and positions. This pre-step evaluation calculates the correcting constraint forces 
which, when applied to the input forces, (e.g. from gravity, wind, springs) keeps the constraints legal. 
 
 
1D Example – Multiple Bodies 
Continuing to keep the examples as simple as possible, we can build on the previous example to illustrate 
stacking. The configuration shown in Figure 7 consists of three objects stacked upon one another; each 
having equal mass.   
 

 
 
Figure 7.  Numerical Example. 
 
We set all the objects to have zero velocities initially, except the second to top one, which we set to 
having an internal downward velocity. As above we use a simplified constraint formulation to calculate 
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the constraint force to prevent movement of the objects. The solved example calculates the modified force 
to stop the objects moving downwards, including an additional force to cancel the second to top body’s 
velocity. 
 
 
Drifting (Baumgarte Stabilization) 
The constraint calculation keeps the system of constraints valid by cancelling out any violating 
forces/velocities. However, due to numerical inaccuracies in calculations, or bad starting values, the 
constraints can become invalid, and so we need to modify our calculation slightly to correct this. 
 
To solve for this, we modify our solver equation by adding a feedback term, which gradually corrects 
drifting errors. We achieve this correction by using the position constraint ‘c’, to feed back into the 
velocity constraint, causing the simulation constraints to remain valid at all times. 
 
Modifying our original velocity constraint from Equation (10) to give feedback, we get: 
 
 0c Jq cβ= + =ɺɺ  (25) 
 
where β is the bias factor (0 1)β< < . 
 
This corrective term is effectively the same as adding a spring, due to its remedial nature being 
proportional to the positional error.  
 
float  beta = 0. 1f ;                       // Drifting correction factor 
 
DMatrix Jt = Transpose(J);               // Formulation of the solver equations  
DMatrix A  = J*MInverse*Jt; 
 
DMatrix b  = J*(u + dt*MInverse*Fext) +  //  
             beta*c;                     // Drifting (Baumgarte) appended on end 
         
DMatrix x(A.GetNumRows(), b.GetNumCols()); 
 
// Solve for x 
LCPSolver(A, b, &x);                     // Solver, equality constraint case  
Code 4.  Drifting correction – achieved by appending a drift correction term to the base solver equation. 

 
Note 

If the simulation begins with invalid constraint configurations, the Baumgarte feedback term will cause 
the system to try and correct itself. Additionally, we can use this effect to modify our contact constraints, 

so that if they penetrate, the constraint will apply a correcting penalty force to push the shapes out of 
penetration. 

 
 
Constraint Examples 
Formulating the constraint condition ‘C’, we can calculate how to differentiate and extrapolate the 
Jacobian to determine how our system moves and to restrict its movement to create our constraint. 
 
Example: Fixed with no translational or rotational movement 
Formulate the positional constraint: 
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 , , , , , 0x x y y z z x x y y z zc q p q p q p q p q p q pθ θ θ θ θ θ = − − − − − − =   (26) 

 
where , , , , ,xyx z y zq q q q q qθ θ θ are the position and orientation of the body, and , , , , ,xx y z y zp p p p pp θ θ θ are 

the global translation and angular constants. Noting that ‘0’ represents a zero vector [0,0,0,0,0,0], if we 
then differentiate this constraint with respect to time, we obtain the velocity constraint: 
 
 , , , , , 0x y z x y zc q q q q q qθ θ θ = = ɺ ɺ ɺ ɺ ɺ ɺ ɺ  (27) 

 
Since our constraint position and orientation are constant, they simply cancel out during differentiating, 
hence enabling us to compare and isolate the Jacobian: 
 
 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Jq qc

 
 
 
 

= = 
 
 
 
 

=

 

ɺɺɺ  (28) 

 
We make the constraint from six rows and takes away six degrees of freedom, hence the rigid body 
cannot move in any direction or orientation. 
 
Example: No movement along the X-axis 
From the previous example, we can then build upon the fact that if we use only a single row, we can 
eliminate a single degree of freedom. 
 
 [ ]1 0 0 0 0 0 0q =ɺ  (29) 

Through visual analysis, we can make out that the velocity in the x-axis is cancelled out by having a 
single 1 in the first column, hence no velocity in this direction results in no movement. Since the other 
velocity components are not affected, we can deduce that they will be unaffected. This constraint 
formulation only affects the changing velocity to prevent movement in a single direction, and not the 
actual position at each moment. 
 
Example: No rotation around up vector (y-direction)  
Whereas we removed translation in the x-axis previously, we extend this further by removing a single 
axis of rotation. It should be visually clear that the first three columns are the positional constraints, and 
the final three columns make up the rotational movement.  
 
 [ ]0  0  0  0 1   0  0q =ɺ  (30) 

As shown above, adding a one to the fifth column prevents any angular velocity in the y-axis and hence 
any rotational movement similarly.   
 
 
Example: Ball and socket constraint 
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When dealing with pairs of bodies, we need to use two Jacobian matrices to represent the constraint 
condition. Below, we show the formulation of a ball-joint, by constructing its positional constraint then 
differentiating it, so we can extract the Jacobian for each object. Notice that the rows are a combination of 
translational and rotational information; making the constrained movement more complex. 
 
 [ ]1 1 0 0( ) ( ) 0rc p r p+ − += =  (31) 

where p represents the object centre, and r the relative offset from it. 
 
 [ ]1 1 1 0 0 0) 0( ( )v r rc vω ω+ × − + ×= =ɺ  (32) 

 
 * *

1 1 0[ , ], [ , ]oJ I r J I r= = −  (33) 

 
 

0 0 1 1

0 0 0 1 1 1

0 0 1 1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0

z y z y

z x z x

y x y x

r r r r

r r q r r q

r r r r

   − −
   − − − =   
   − −   

ɺ ɺ  (34) 

 
where * *

1 0,r r represents a 3x3 skew matrix which is equivalent to the cross product. 
 
 
Example :Fixed Point (Nail) 
If we took our object and just stuck a nail through any point, it would stay locked at that point while still 
able to rotate. We effectively use the same method as above (ball and socket), except, we only have a 
single body. The Jacobian formulation is shown below, and shows how the object cannot move in the ‘x’, 
‘y’ or ‘z’ direction but can still rotate relative to a specific point. 
 
 1 0 0 0

0 1 0 0 0

0 0 1 0

z y

z x

y x

r r

r r q

r r

 −
 − = 
 − 

ɺ  (35) 

 
where , ,x y zr r r represent the offset from the object’s centre to the point we are rotating around. 

 
Example: Distance constraint (No Rotation) 
A simple and useful constraint, especially when working with point-masses is a distance constraint 
whereby the distance between any two points remains fixed. 
 
Setting up the conditions under which a constraint would be valid, we can say that the distance must 
always be equal to some length (l): 
 
 || 0 1||p p l− =  (36) 

where ||p0-p1|| is the length between the two points, ‘p0’ and ‘p1’. 
 
Constructing the position constraint ‘c’, we have: 
 



Practical Introduction to Rigid Body Linear Complementary Problem (LCP) Constraint Solvers 
 

 || 0 1|| 0c p p l= − − =  (37) 

Knowing ‘c’, we can differentiate it to getcɺ , and using the definition for the Jacobian velocity constraint, 
extrapolate the Jacobian component: 
 
 v0

v1
Jq c and q

 
= =  

 
ɺ ɺ ɺ

 
 

(38) 

 ˆ ˆT Tn nJ − =    (39) 

e.g. 
 
 ˆ ˆ ˆ       0x y zn n n q  =  ɺ  (40) 

where ‘n’ is the unit vector between the two points:  
 
 ( 1 0)

ˆ
|| 1 0 ||

p p
n

p p

−=
−

 (41) 

 
Example: Contact Constraint 
We formulate a contact constraint which uses the contact normal ‘n’ to prevent objects intersecting. The 
added difference between this constraint and the previous constraint examples is the added boundary 
condition. Whereas we used the equality condition for previous examples, we now apply an inequality 
condition for the solution λ  to be greater than or equal to zero, warranting objects to move away from 
each other. For the calculations below we take for granted that the normal vector is pointing from body0 
to body1. 
 
 [ ]1 1 0 0 1ˆ( ) ( ) 0p r p r nc + − + ⋅ ≥=  (42) 

 
 [ ] [ ]1 1 1 0 0 0 1 1 1 0 0 1ˆ ˆ( ) ( ) ( ) ( ) ( ) 0c v r v r n p r p r nω ω ω= + × − + × ⋅ + + − + ⋅ × ≥ɺ  (43) 

 
 

1 0 1 1 1 1 1ˆ ˆ ˆ ˆ[ , ], [ , ]oJ n r n J n r n= × = − ×  (44) 

 
 

1 0 0 1 1 1

1 0 0 0 1 1 1 1

1 0 0 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

x z y x z y

y z x y z x

z y x z y x

n a a n a a

n a a q n a a q

n a a n a a

   − −
   − − − =   
   − −   

ɺ ɺ  (45) 

 
where ‘r’ is the relative offset from the object centre to the contact point and 0 0 1 1 1 1ˆ ˆ,a r n a r n= × = × . 
 
When implementing this constraint, it is crucial to remember 0λ ≥  for the boundary conditions. We can 
additionally add friction by modifying our constraint to add a cancelling force along the tangential 
direction of movement. 
 
IMPLEMENTATION 
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Writing the code 
 
Below is the code for the rigid body class, which encapsulates the properties of each object. We separate 
out the angular and linear components, so that we can easily modify it to work with full 3D or point-mass 
simulations. 
 
class  RigidBody_c // DirectX Implementation  
{ 
    //<---------LINEAR----------------><-------------AN GULAR--------------> 
    D3DXVECTOR3 m_position;             D3DXQUATERN ION  m_orientation; 
    D3DXVECTOR3 m_linearVelocity;       D3DXVECTOR3      m_angularVelocity; 
    D3DXVECTOR3 m_force;                D3DXVECTOR3      m_torque; 
    float        m_invMass;              D3DXMATRIX      m_in vInertia; 
 
 
    void  AddForce( const  D3DXVECTOR3& worldPosForce,  
                  const  D3DXVECTOR3& directionMagnitude)  
    { 
        DBG_VALID(worldPosForce); 
        DBG_VALID(directionMagnitude); 
 
        //<---------LINEAR-----------------> 
        m_force         += directionMagnitude; 
         
        //<-----------ANGULAR--------------> 
        D3DXVECTOR3 distance = worldPosForce - m_po sition; 
        D3DXVECTOR3 torque   = Cross(distance, dire ctionMagnitude); 
        AddTorque(torque); 
        DBG_VALID(m_force); 
        DBG_VALID(m_torque); 
    } 
     
    void  AddTorque(D3DXVECTOR3 worldAxisAndMagnitudeTorque)  
    { 
        DBG_VALID(worldAxisAndMagnitudeTorque); 
        m_torque += worldAxisAndMagnitudeTorque; 
    } 
 
    D3DXMATRIX CreateWorldII() 
    { 
        D3DXMATRIX orientationMatrix = CreateMatrix FromQuaternion( m_orientation ); 
        D3DXMATRIX inverseOrientationMatrix  = Tran spose( orientationMatrix ); 
        D3DXMATRIX inverseWorldInertiaMatrix = inve rseOrientationMatrix * m_invInertia * 
                                                                          orientationMatrix; 
        return  inverseWorldInertiaMatrix; 
    } 
};  

Code 5.  Basic Euler Integrator. 

 
Note 

Disable Rotation – If the rigid body simulator contains bugs, it is best to go back to basics, if angular 
problems are suspected, remove the rotation, then various degrees of freedom and add them back when it 

is known that they are working. 
 
Iterative LCP Solver 
From the code below, you can see that the LCP solver consists of nested loops, within which we modify 
our starting approximation iteratively and converge gradually towards a solution. Where the sample code 
uses a preset maximum number of iterations (maxIterations) for straightforwardness, we can alternatively, 
add an early breakout condition to accelerate the simulation, which we introduce later.   
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void  GaussSeidelLCP(DMatrix& a, DMatrix& b, DMatrix* x,  const  DMatrix* lo, const  DMatrix* hi) 
{ 
    int  maxIterations = 10; // Test Max value 
 
    x->SetToZero();  // Clear our matrix to start with (slow, only for d ebug) 
    const  int  n = x->GetNumRows(); 
     
    float  sum = 0. 0f ; 
    while (maxIterations--) 
    { 
        for ( int  i = 0; i < n; i++) 
        { 
            sum = b.Get(i); 
            for ( int  j = 0; j < n; j++) 
            { 
                if ( i != j ) 
                { 
                          sum = sum - (a.Get(i,j) *  x->Get(j)); 
                } 
            } 
            // If a.Get(i,i) is zero – you have a bad matrix!  
            DBG_ASSERT(a.Get(i,i)!= 0. 0f ); 
            x->Set(i) = sum/a.Get(i,i); 
 
          // Only do condition to check if we have them 
        } 
 
       // If we have boundary conditions, e.g. >= or <=, t hen we modify our basic Ax=b, 
       // solver to apply constraint conditions 
       // Optional - only if bounds 
       if  ( lo || hi ) 
       for  ( int  i= 0; i<n; i++) 
       { 
         if  (lo) 
         { 
            DBG_ASSERT(lo->GetNumCols()== 1); // Sanity Checks 
            DBG_ASSERT(lo->GetNumRows()==n); 
            if  (x->Get(i) < lo->Get(i)) x->Set(i) = lo->Get(i); 
         } 
 
         if  (hi) 
         { 
            DBG_ASSERT(hi->GetNumCols()== 1); // Sanity Checks 
            DBG_ASSERT(hi->GetNumRows()==n); 
            if  (x->Get(i) > hi->Get(i)) x->Set(i) = hi->Get(i); 
         } 
       } 
    } 
    // We've solved x! 
}  
Code 6. Iterative Solver – showing how simple it can be to invert a matrix. 

 
Note 

Fewer Iterations – If you notice in the example code for the ‘Gauss-Seidel’ iterative solver, it clears the 
solution matrix to zero at the start. This makes the assumption that our initial guess is zero. A faster 

method is not to clear the matrix, instead just using the values that are still in it from the previous frame.  
This will give us a good starting guess, enabling us to find a correct result with fewer iterations due to 

very small changes happening between frames. 
 
 
Constraints that ‘Snap-Together’ 
One important aspect when writing a solver is to write the code in such a way that it can easily be adapted 
and the code expanded to handle new constraints and configurations. We do this by constructing a 
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common virtual base class, which all constraints inherit from and implement, so that we are able to ‘plug-
in’ any constraint into our simulator as and when we need it.  
 
class  Constraint_c 
{ 
public : 
    virtual ~Constraint_c(){} 
 
    virtual DMatrix   GetPenalty()                       {   DBG_HALT;   return  DMatrix( 0, 0);}; 
 
    virtual DMatrix   GetJacobian( const  RigidBody_c* rb) {   DBG_HALT;   return  DMatrix( 0, 0);}; 
 
    virtual int        GetDimension() const                {   DBG_HALT;   return  0;           }; 
 
};  
 
If equality and inequality constraints are to be implemented, a base method should be added to 
differentiate them (i.e. as shown below). These are so the inequality conditions can incorporate additional 
boundary checks when solving the system of equations. 
 
     virtual bool   IsEquality () const                    {   return  false ;                    };  
 
 
‘Heart’ of the Simulator 
Below we show the function ‘ComputeJointConstraints ’, which is responsible for asking every constraint 
about its dimensions, then constructing large sparse matrices, which correspond to the system 
configuration and calculate the corresponding constraint forces: 
 
 
void  Simulation:: ComputeJointConstraints () 
{ 
    // Magic Formula 
    // 
    // J * M^-1 * J^t  * lamba = -1.0 * J * (1/dt*V + M ^-1 * Fext) 
    // 
    // A x = b 
    // 
    // where 
    // 
    // A = J * M^-1 * J^t 
    // x = lambda 
    // b = -J * (1/dt*V + M^-1 * Fext) 
    // 
 
    const  int  numBodies         = m_rigidBodies.Size(); 
    const  int  numConstraints    = m_constraints.Size(); 
 
    if  (numBodies== 0 || numConstraints== 0) return ; 
 
    //------------------------------------------------- ------------------------ 
    // 1st - build our matrices - very bad to build the m each frame, but 
    //------------------------------------------------- ------------------------ 
    // simpler to explain and implement this way 
    DMatrix s(numBodies* 7, 1);          // pos & qrot 
    DMatrix u(numBodies* 6, 1);          // vel & rotvel 
    DMatrix s_next(numBodies* 7, 1);     // pos & qrot after timestep 
    DMatrix u_next(numBodies* 6, 1);     // vel & rotvel after timestep 
    DMatrix S(numBodies* 7, numBodies* 6); 
    DMatrix MInverse(numBodies* 6, numBodies* 6); 
    DMatrix Fext(numBodies* 6, 1); 
 
    for  ( int  i= 0; i<numBodies; i++) 
    { 
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        const  RigidBody_c* rb = m_rigidBodies[i]; 
 
        s.Set(i* 7+0) = rb->m_position.x; 
        s.Set(i* 7+1) = rb->m_position.y; 
        s.Set(i* 7+2) = rb->m_position.z; 
        s.Set(i* 7+3) = rb->m_orientation.w; 
        s.Set(i* 7+4) = rb->m_orientation.x; 
        s.Set(i* 7+5) = rb->m_orientation.y; 
        s.Set(i* 7+6) = rb->m_orientation.z; 
 
        u.Set(i* 6+0) = rb->m_linearVelocity.x; 
        u.Set(i* 6+1) = rb->m_linearVelocity.y; 
        u.Set(i* 6+2) = rb->m_linearVelocity.z; 
        u.Set(i* 6+3) = rb->m_angularVelocity.x; 
        u.Set(i* 6+4) = rb->m_angularVelocity.y; 
        u.Set(i* 6+5) = rb->m_angularVelocity.z; 
 
        const  D3DXQUATERNION& q = rb->m_orientation; 
        DMatrix Q( 4, 3); 
        Q.Set( 0, 0)=-q.x;        Q.Set( 0, 1)=-q.y;        Q.Set( 0, 2)=-q.z; 
        Q.Set( 1, 0)= q.w;        Q.Set( 1, 1)= q.z;        Q.Set( 1, 2)=-q.y; 
        Q.Set( 2, 0)=-q.z;        Q.Set( 2, 1)= q.w;        Q.Set( 2, 2)= q.x; 
        Q.Set( 3, 0)= q.y;        Q.Set( 3, 1)=-q.x;        Q.Set( 3, 2)= q.w; 
        Q = 0. 5f  * Q; 
        DMatrix Idenity( 3, 3); 
        Idenity.SetToZero(); 
        Idenity.Set( 0, 0) = Idenity.Set( 1, 1) = Idenity.Set( 2, 2) = 1. 0f ; 
        S.SetSubMatrix(i* 7+0,   i* 6+0,   Idenity); 
        S.SetSubMatrix(i* 7+3,   i* 6+3,   Q); 
 
        DMatrix M( 3, 3); 
        M.Set( 0, 0) = M.Set( 1, 1) = M.Set( 2, 2) = rb->m_invMass; 
 
        const  D3DXMATRIX& dxm = rb->CreateWorldII(); 
 
        DMatrix I( 3, 3); 
        I.Set( 0, 0)=dxm._11;  I.Set( 1, 0)=dxm._12;  I.Set( 2, 0)=dxm._13; 
        I.Set( 0, 1)=dxm._21;  I.Set( 1, 1)=dxm._22;  I.Set( 2, 1)=dxm._23; 
        I.Set( 0, 2)=dxm._31;  I.Set( 1, 2)=dxm._32;  I.Set( 2, 2)=dxm._33; 
        MInverse.SetSubMatrix(i* 6,   i* 6,   M); 
        MInverse.SetSubMatrix(i* 6+3, i* 6+3, I); 
 
        DMatrix F( 3, 1); 
        F.Set( 0, 0) = rb->m_force.x; 
        F.Set( 1, 0) = rb->m_force.y; 
        F.Set( 2, 0) = rb->m_force.z; 
        D3DXVECTOR3 rF = rb->m_torque; 
        DMatrix T( 3, 1); 
        T.Set( 0, 0) = rF.x; 
        T.Set( 1, 0) = rF.y; 
        T.Set( 2, 0) = rF.z; 
        Fext.SetSubMatrix(i* 6,   0,  F); 
        Fext.SetSubMatrix(i* 6+3, 0,  T); 
    } 
 
    //------------------------------------------------- ------------------------ 
    // 2nd - apply constraints 
    //------------------------------------------------- ------------------------ 
    // Determine the size of our jacobian matrix 
    int  numRows = 0; 
    for  ( int  i= 0; i<numConstraints; i++) 
    { 
        const  Constraint_c* constraint = m_constraints[i]; 
        DBG_ASSERT(constraint); 
        numRows += constraint->GetDimension(); 
    } 
 
    // Allocate it, and fill it 
    DMatrix J(numRows, 6*numBodies); 
    DMatrix e(numRows, 1);              // Error Correction 
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    int  constraintRow = 0; 
    for  ( int  c= 0; c<numConstraints; c++) 
    { 
        Constraint_c* constraint = m_constraints[c] ; 
        DBG_ASSERT(constraint); 
 
        for  ( int  r= 0; r<numBodies; r++) 
        { 
            const  RigidBody_c* rigidBody = m_rigidBodies[r]; 
            DBG_ASSERT(rigidBody); 
 
            DMatrix JMat = constraint->GetJacobian( rigidBody); 
            if  (JMat.GetNumCols()== 0 && JMat.GetNumRows()== 0)  
                continue ; 
            DBG_ASSERT(JMat.GetNumCols()!= 0); 
            DBG_ASSERT(JMat.GetNumRows()!= 0); 
 
            J.SetSubMatrix(constraintRow, r* 6, JMat); 
 
            DMatrix errMat = constraint->GetPenalty (); 
            e.AddSubMatrix(constraintRow, 0, errMat); 
        } 
        constraintRow += constraint->GetDimension() ; 
    } 
 
    float  beta = 0. 1f ; // Error correction term 
 
    DMatrix Jt = Transpose(J); 
    DMatrix A  = J*MInverse*Jt; 
    DMatrix b  = J*(u + dt*MInverse*Fext) + beta*e;  
    DMatrix x(A.GetNumRows(), b.GetNumCols()); 
 
    DMatrix* lo = NULL; // Don’t set any min/max boundaries for this demo/s ample 
    DMatrix* hi = NULL; 
 
    // Solve for x 
    LCPSolver(A, b, &x, lo, hi); 
         
    //dprintf( A.Print() ); 
 
    u_next = u - MInverse*Jt*x + dt*MInverse*Fext; 
    s_next = s + dt*S*u_next; 
 
    // Basic integration without - euler integration st andalone 
    // u_next = u + dt*MInverse*Fext; 
    // s_next = s + dt*S*u_next; 
 
    //------------------------------------------------- ------------------------ 
    // 3rd – re-inject solved values back into the simu lator 
    //------------------------------------------------- ------------------------ 
    for  ( int  i= 0; i<numBodies; i++) 
    { 
        RigidBody_c* rb = m_rigidBodies[i]; 
        rb->m_position.x            = s_next.Get(i* 7+0); 
        rb->m_position.y            = s_next.Get(i* 7+1); 
        rb->m_position.z            = s_next.Get(i* 7+2); 
        rb->m_orientation.w         = s_next.Get(i* 7+3); 
        rb->m_orientation.x         = s_next.Get(i* 7+4); 
        rb->m_orientation.y         = s_next.Get(i* 7+5); 
        rb->m_orientation.z         = s_next.Get(i* 7+6); 
 
        rb->m_linearVelocity.x      = u_next.Get(i* 6+0); 
        rb->m_linearVelocity.y      = u_next.Get(i* 6+1); 
        rb->m_linearVelocity.z      = u_next.Get(i* 6+2); 
        rb->m_angularVelocity.x     = u_next.Get(i* 6+3); 
        rb->m_angularVelocity.y     = u_next.Get(i* 6+4); 
        rb->m_angularVelocity.z     = u_next.Get(i* 6+5); 
 
        rb->m_force                 = D3DXVECTOR3( 0, 0, 0); 
        rb->m_torque                = D3DXVECTOR3( 0, 0, 0); 
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        // Just incase we get drifting in our quaternion or ientation 
        D3DXQuaternionNormalize(&rb->m_orientation,  &rb->m_orientation); 
    } 
 
}  

Code 7.  Section of code that actually does the magic, by building the large sparse matrices, passing them 
to the solver which returns the corrected the forces and torques which we re-inject back into the 
simulator. 
 
Of course, the solver is the one that is going to consume most of the time, as it has to determine the actual 
solution to the matrix. The code of our iterative solver, however, is really quite simple. As mentioned 
earlier, if one is dealing with real-time applications, an iterative solver should always be used. 
 
Why do solvers break? 
When implementing a solver, there are a few things to keep an eye out for: 
 

• Overly constrained systems. 
• Numerical error (drifting, floating point accuracy). 
• Divide by zero errors. 
• Impossible constraints. 
• Invalid coordinates (e.g. placing rigid bodies at identical locations). 
• Bad code (e.g. memory leaks, memory corruption, and incorrect implementation of algorithm). 

 
 

Note 

Diagonal Zeros – If there are zeros on the diagonal, something is wrong. It can cause the LCP solver to 
break, giving solutions that go to infinity. 

 
 
Bad Constraints  
There are times when the simulation constraints cannot be solved, usually because of human error or 
some unforeseen circumstances. This commonly occurs when constraints fight or violate each other, so 
that no one single solution exists to keep all the constraints valid. An example is illustrated below, 
whereby two objects are placed out of reach of one another using nail constraint, plus an additional joint 
constraint connecting them. These constraints contradict each other because the objects cannot be kept out 
of reach and also connected.  For instance, in the example shown in Figure 8, illustrates an impossible 
constraint situation. 
 

 
 
Figure 8. Impossible constraint situations.   
 

Nail Constraints 

? 

Joining Constraints 
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These ill-conditioned constraint configurations can introduce erratic behavior into the simulation because 
there is no real solution.  However our iterative solver, more often than not, aims to find a best-fit 
approximation, which will allow us to move forward in the hope that the configuration fixes itself. 
 
Point-Mass Constraints (2D, No Rotation) 
Using a simplified constraint solver, rotations can be cut out, just working with position constraints, 
enabling complex structures to be constructed in 2D or 3D just using point-mass objects.  Simple 
constraints (e.g. nail and distance) let the solver be tested before moving onto rigid bodies and adding in 
rotations.  Figures 9 and 10 illustrates examples of point-mass constraints for constructing articulated 
structures. 
 

 
 
Figure 9. Simulation screenshots for Point-Mass solver. (Spheres represent connecting joint constraints, 
and the lines represent point-mass distance constraints). 

 
The code, written for simplicity, has no optimisations, is inefficient and slow, but has been written to 
introduce a working solver that can be played with to gain understanding. All the particles have a mass of 
1, but they can easily be set to different values – maybe draw larger spheres for larger mass? We used 
only two constraint types, fixed (nail) and distance (rods), but other constraints and springs can be mixed 
in. The simulation runs in 3D, so all the points and constraints actually solve for ‘x’, ‘y’ and ‘z’, but we 
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clamp the ‘z’ to zero and render in orthogonal to give the appearance of 2D; so elaborate 2D or 3D 
structures can be constructed. 
 
We set a fixed number of iterations for the solver demo, so the constraints will stretch slightly for large 
forces. We thought this was acceptable, but the maximum iterations can be increased and the error can be 
monitored.   
 
The mass-point solver in 2D/3D environments can be used to create dynamic structures, from which 
orientation and rotation information can be extracted, by using positions of point masses to build up a 
reference orientation. 
 

 
 
Figure 10. Use point-mass configurations to extract orientation (rotation) information for graphical 
models or rigid bodies. 

 
Point Mass Demo (3D, No Rotation) 
Expanding the simple point-mass demo to 3D, with a sphere dropping onto a mesh surface, we added 
constraints at each frame between the rigid body spheres to keep their distance to the sum of their radius, 
as shown in Figure 11. 
 
 

 
 
Figure 11. (Left) Demo screenshot – large sphere falling onto the distance constrained net. (Right) 
Simplified diagram showing how we handled collisions between spheres and mass-points. 

 
Stable stacking demo (3D, With Rotation) 

X 

Y 
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A good test for any physics simulator is the ability to deal with large stacks of objects. Creating a stable 
stacking configuration is in part down to how reliable the contact information is, and how much it 
changes between frames. To create reliable contact information, reliable contact manifolds need to be 
built, which are in contact across multiple frames. When we stack objects that are not moving, the 
collision information between frames should remain the same, and not jitter around due to floating point 
errors and re-calculation of collision points. 
 

 
 
Figure 12.  Stacking demo, 700 rigid body cubes in a circular tower. 

 
SPARSE MATRICES 
Applying conventional dense matrix techniques to solve systems of constraints presented in this chapter is 
an exceedingly ill-advised thing to do. As mentioned earlier, the matrices used in our solver are sparse, 
and we need to use this sparsity to our advantage. You can see a simple demonstration of the sparsity of a 
matrix illustrated in Figure 13, where we plot the non-zero matrix values to the right of the simulation 
screenshot in the figure. 
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Figure 13. Sparsity pattern of the 1 TJM J− matrix for constraint simulations. Top, mass-point distance 
constraints constructing a net (matrix is less than 1% filled). Bottom, circular stack of rigid bodies.  The 
graphs to the right illustrate the matrix density. 
 
Taking advantage of operator overloading, especially the multiplication operator ‘*’, allows us to create 
more robust code with the ability to track down problems early on. Asserts and halts enable runtime 
problems to be detected, both by other people using the code, or just silly typing mistakes. These good 
coding techniques will help prevent memory corruption and random unpredictable crashes in unrelated 
code. Reliable code will ‘stop’ and tell us why. If possible, code that ignores a situation without telling us 
and attempts to cope with the problem and continue, should be avoided. 
 
When implementing the matrix code, a wrapper class should be used so that various implementations for 
comparison and profiling can be swapped out. There are numerous matrix solutions freely available 
(Dongarra, 2009), each having their own advantages and disadvantages, and trading between various 
features such as memory and access times. We introduce a few methods here, giving the source for an 
STL mapping method. 

20x20 mass points with distance constraints 
400 rigid bodies 
764 constraints 

0 
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0 772 200 400 
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0 908 200 400 
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400 
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Initially, the aim should be to get the LCP constraint solver working, without worrying too much about 
optimisation. Later, when things are working as expected, everything can be sped up. The first 
implementation will use a dense matrix method, and will initially be the biggest slowdown, because 90% 
of the time it will be managing the matrix data, where massive chunks of memory will be created, 
destroyed and copied in each frame. 
 
Sparse matrices enable us to gain optimisation speedups while saving memory and bandwidth. In 
addition, our linear iterative systems are also able to exploit sparsity, by skipping unnecessary 
calculations, to improve performance, where even trivial operations like filling a n m× matrix with ‘0s’ 
would take ‘O(nm)’ time, for a dense matrix can be avoided.  
 

Note 

 
A matrix wrapper class will give safety checks, an array of out of bound checks, and enable various 

internal optimisations (e.g. memory speedups) to be added without modifying the working solver code. 
 

If multiple platforms are worked on, a lot of platform specific code inside the matrix class can be 
embedded without complicating the solver. 

 
The matrix code can be expanded to use templates, so it can work with more data types, other than just 
floats, e.g. doubles, or any other objects, so it can be expanded to other situations, such as image 
processing or fluid dynamics. 
 
One of the biggest slowdowns that will be encountered in solvers, other than actually solving the system 
of equations by inverting the matrix, is the dynamic nature of the matrices. Dynamic constraints, such as 
collisions and contacts can appear and disappear from frame to frame, which means resizing and updating 
the large matrix. Modifying the matrix by each frame, means introducing additional slowdowns, as the 
matrix class is allocating and reallocating large chunks of memory each frame, and if using the 
assignment operator, it is also being copied. For static constraints, there is the added benefit of coherency 
between frames, which we can exploit for speedups. 
 
 
// Build ... 
DMatrix MInverse(numBodies, numBodies); 
DMatrix MFe(numBodies, 6); 
DMatrix MVel(numBodies, 6); 
 
DMatrix JMatrix(constraints, numBodies); 
DMatrix JTransposeMatrix = Transpose(JMatrix); 
 
// .. fill with data 
 
DMatrix A =  JMatrix * MInverse * JTransposeMatrix;  
DMatrix b = JMatrix * ( MVel + MInverse * MFe ); 
 
// .. solve etc  
Code 8. Showing a slice of code, where working with matrices is as easy as working with base variables 
like ints and floats. 

In a poorly implemented solver with little consideration for matrix management, the biggest slowdown 
will be the matrices, where a large number of rigid bodies and constraints can produce very large matrices 
which are difficult to manage and manipulate and trigger large memory allocations and copies. 
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We solve our slow matrix implementation by taking advantage of our custom matrix wrapper class, where 
we are able to optimise things under the hood, using methods such as custom caching and memory pools. 
Internally, the matrix class should have a MatrixManager, which we shared across matrix instances, and 
stores common sized matrices, so instead of creating them, the manager would have them loaded and 
ready for use. 
 
In those cases when the matrix has not actually been destroyed and created, but exists as a member 
variable, or a single instance, you can have it keep a large chunk of memory internally, so when the 
matrix is resized to make it smaller or bigger, it will keep enough memory internally for a larger matrix. 
So if the matrix through experimentation is no larger than 100, it could be set to allocate space internally 
to 100x100, but to the outside world it would appear to be whatever size it was resized to, e.g. 2x3, 30x60 
etc., but it will have allocated 100x100 internally and avoid memory resize slowdowns. 
 
Overloading the assignment operator is another good way to achieve speedups, where we can copy large 
chunks at a time internally instead of byte by byte, and if we are using sparse data representations for our 
matrix data, the amount of data that we will copy is a noticeably less, as we are only copying the non-zero 
data instead of the massive chunk of memory. 
 
Dense Matrix (Brute Force) 
So to begin with, we start with a basic dense matrix class, which we will call the DMatrix (i.e. Dynamic 
Matrix). Three essential variables are needed to begin with: the pointer to the data, the number of columns 
and the number of rows, as shown below: 
 
class  DMatrix 
{ 
public : 
    float *  m_data;     // rows x cols array of data  
    int      m_numRows; 
    int      m_numCols; 
 
}; // End DMatrix Class  
Code 9.  ‘Raw’ starting point – the essentials only. 

A few helper functions need to be added, so that all the data operations inside the class are managed. For 
example, when the DMatrix class is created, we need to be able to specify a default size and maybe the 
starting data, to initialize the array. We add some helper functions below, including a constructor, and add 
numerous assert checks. 
 
class  DMatrix 
{ 
public : 
    DMatrix( const  int  numRows, const  int  numCols, const  float * data= NULL) 
    { 
        Init(numRows, numCols, data); 
    } 
 
    ~DMatrix() 
    { 
        delete[] m_data; 
    } 
 
    inline int  GetNumRows() const    { return  m_numRows; } 
    inline int  GetNumCols() const    { return  m_numCols; } 
 
    inline float  Get( int  row, int  col= 0) const  
    { 
      DBG_ASSERT(row>= 0 && row<m_numRows); 
      DBG_ASSERT(col>= 0 && col<m_numCols); 
      const  int  indx = GetDataIndex(row,col); 
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      return  m_data[indx]; 
    } 
 
    inline float & Set( int  row, int  col= 0) const  
    { 
      DBG_ASSERT(row>= 0 && row<m_numRows); 
      DBG_ASSERT(col>= 0 && col<m_numCols); 
      const  int  indx = GetDataIndex(row,col); 
      return  m_data[indx]; 
    } 
 
    inline int  GetDataIndex( int  row, int  col) const  
    { 
      const  int  indx = col + m_numCols*row; 
      DBG_ASSERT(indx>= 0 && indx<m_numRows*m_numCols); 
      return  indx; 
    } 
 
private : 
    void  Init( const  int  numRows, const  int  numCols, const  float * data= NULL) 
    { 
        DBG_ASSERT(numRows>= 0 && numRows< 500); // Sanity checks - temp, do we really have size 
        DBG_ASSERT(numCols>= 0 && numCols< 500); // 0 or >500 array or did something go wrong? 
        if  (numRows== 0) { DBG_ASSERT(numRows== 0 && numCols== 0); } 
        if  (numCols== 0) { DBG_ASSERT(numRows== 0 && numCols== 0); } 
 
        m_data      = NULL; 
        m_numRows   = numRows; 
        m_numCols   = numCols; 
 
 
        if  (numRows> 0 && numCols> 0) 
        { 
            m_data = new float[numRows * numCols]; 
            DBG_ASSERT(m_data); 
 
            if  (data) 
            { 
                memcpy(m_data, data, sizeof ( float )*numRows*numCols); 
            } 
            else  
            { 
                memset(m_data, 0, sizeof ( float )*numRows*numCols); 
            } 
        } 
    } 
 
 
    float *  m_data; 
    int      m_numRows; 
    int      m_numCols; 
 
}; // End DMatrix Class  
Code 10.  Constructor and sanity checks – starting pieces. 

If you look at the code above, you will notice that a large majority of the code is for checks. This is 
important, as it is far too easy for a mistaken value to propagate between functions and variables, to a 
point where it is impossible to track down the cause, leaving the system in an unrecoverable state. To 
reiterate, it is best to assert and stop as soon as a problem appears, so that the situation can be analysed 
and fixed. 
 
There are various ‘sanity’ checks in the code, which are not vital, but give us an early warning that 
something might be incorrect. One such example of an early warning assert, is if the matrix size is greater 
than 500x500, we know something might have gone wrong, before attempting to allocate memory for 
some unexpected size matrix (i.e. 10000x10000, which can really be harmful). An additional check would 
be that zero size arrays are not created, and hence assert if the code attempts to, so we can track it down 
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and repair it. These checks give us a ‘robust’ matrix wrapper class that defines a set of common access 
functions from which we can swap in a better sparse matrix implementation at a later time. 
 
Notice as well that the data and size variables have been made private. This is deliberate, so that all our 
internal workings for the matrix class remain hidden from the outside world, and use access functions to 
set or get the information within. Even simple functions such as ‘Get’, ‘Set’ and ‘GetNumRows’, can be 
used to give us extra checks, and enable us to change the code internally for any reason (i.e. data 
management optimisations). So to reiterate, this enables us to modify and improve our implementation 
without actually changing our simulator code, only the matrix code needs be changed. The dense matrix 
class gives a solid test bed from which results can be compared and checks made to ensure optimisations 
and improvements work correctly. 
 
STL Map Matrix 
Here, we present a practical, exploitable sparse matrix implementation that uses the Standard Template 
Library (STL). The code gives a skeleton implementation which can built upon, and uses a technique 
based on Compressed Row Storage (CRS) (i.e. similar to the method MatLab uses). The STL map matrix 
saves space by using more pointers to represent the data. 
 
Matrix using Brute Force Matrix using STL Map 

(0%, 1%, 10% Random Fill) 
Size: 1 x 1, Bytes Used: 4 
Size: 10 x 10, Bytes Used: 400 
Size: 100 x 100, Bytes Used: 40000 
Size: 1000 x 1000, Bytes Used: 4000000 
Size: 10000 x 10000, Bytes Used: 400000000 

(0% Fill) 
Size: 1 x 1, Bytes Used: 36 
Size: 10 x 10, Bytes Used: 36 
Size: 100 x 100, Bytes Used: 36 
Size: 1000 x 1000, Bytes Used: 36 
Size: 10000 x 10000, Bytes Used: 36 
 
(1% Random Fill) 
Size: 1 x 1, Bytes Used: 36 
Size: 10 x 10, Bytes Used: 120 
Size: 100 x 100, Bytes Used: 6456 
Size: 500 x 500, Bytes Used: 89520 
Size: 1000 x 1000, Bytes Used: 299028 
Size: 10000 x 10000, Bytes Used: 24481620 
 
(10% Random Fill) 
Size: 1 x 1, Bytes Used: 36 
Size: 10 x 10, Bytes Used: 756 
Size: 100 x 100, Bytes Used: 28932 
Size: 500 x 500, Bytes Used: 600924 
Size: 1000 x 1000, Bytes Used: 2343684 
Size: 10000 x 10000, Bytes Used: 229075404 

Table 1. Comparing standard brute force matrix memory usage with that of an STL map one. 

 
 
//  Sparse Matrix Implementation using STL Maps 
 
#include  <cstdlib> 
#include  <map> 
#include  <vector> 
 
#define  STL_CONST const  
 
class  DMatrixSTL 
{ 
public : 
    typedef  std::map< size_t , std::map< size_t  , float > >     mat_t; 
    typedef  mat_t::const_iterator                           ro w_iter; 
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    typedef  std::map< size_t , float >                         col_t; 
    typedef  col_t::const_iterator                           co l_iter; 
 
    DMatrixSTL( size_t  numRows, size_t  numCols, const  float * data= NULL) 
    {  
        m_numRows=numRows;  
        m_numCols=numCols; 
 
        DBG_ASSERT(numRows>= 0 && numRows< 1501 ); 
        DBG_ASSERT(numCols>= 0 && numCols< 1501 ); 
        if  (numRows== 0) { DBG_ASSERT(numRows== 0 && numCols== 0); } 
        if  (numCols== 0) { DBG_ASSERT(numRows== 0 && numCols== 0); } 
 
        if  (data) 
        { 
            m_mat.empty(); 
            for  ( int  i= 0; i<( int )numRows; ++i) 
            { 
                for  ( int  k= 0; k<( int )numCols; ++k) 
                { 
                    const  float  val = data[ i + k*numRows ]; 
                    Set(i,k) = val; 
                } 
            } 
        } 
    } 
 
    inline float  Get( size_t  row, size_t  col= 0) const  
    { 
        if (row< 0 || col< 0 || row>=m_numRows || col>=m_numCols) { DBG_HALT; }  
        #if  0 
        // Destroys sparsity and prevents the use of const 
        // If the element doesn't exist, it inserts one. 
        return  m_mat[row][col]; 
        #else  
        mat_t::const_iterator it; 
        it = m_mat.find( row ); 
        float  val = 0. 0f ; 
        if  ( it != m_mat.end() ) 
        { 
            col_t::const_iterator itc = (*it).secon d.find( col ); 
            if  ( itc != (*it).second.end() ) 
            { 
                val = (*itc).second; 
            } 
        } 
         
        return  val; 
        #endif  
    } 
 
    float & Set( size_t  row, size_t  col= 0) 
    { 
        if (row< 0 || col< 0 || row>=m_numRows || col>=m_numCols) {  DBG_HALT  }; 
        return  m_mat[row][col]; 
    } 
     
    void  SetToZero() 
    { 
        m_mat.empty(); 
    } 
 
    inline int  GetNumRows() const    { return  m_numRows; } 
    inline int  GetNumCols() const    { return  m_numCols; } 
 
protected : 
    DMatrixSTL(){} 
 
public : 
    mat_t   m_mat; 
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    size_t   m_numRows; 
    size_t   m_numCols; 
}; 
 
// Declarations for essential helper functions and operators overloading. e.g: 
DMatrixSTL operator*( DMatrixSTL &a, DMatrixSTL &b ); 
DMatrixSTL Transpose(STL_CONST DMatrixSTL& m); 
DMatrixSTL operator+ (STL_CONST  DMatrixSTL &a, STL _CONST DMatrixSTL &b); 
inline DMatrixSTL operator- (STL_CONST DMatrixSTL  &a, STL_CONST DMatrixSTL &b); 
inline DMatrixSTL operator*( float  a, STL_CONST DMatrixSTL &b );  
Code 11.  STL Map Matrix. 

 
Linear Linked-List Sparse Matrix 
Linked-list matrices are an alternative way of building a sparse matrix class, and while probably not one 
of the fastest, they do offer large memory savings. One way the linked-list matrix would take advantage 
of sparsity, is by storing only non-zero elements in a list, and access them by it. It offers large memory 
savings but access times can be slow, since we need to find the index in the list, which can mean iterating 
over the list to find it. 
 
This is a good solution for extremely sparse matrices, but as the matrix becomes less sparse, its memory 
overheads and access times grow exponentially. For example, the memory overhead of an empty linked-
list class is can be as little as ‘12 bytes’, no matter how many rows or columns, and whereas a dense 
matrix class of size 100x100 usually uses around 40,000 bytes, for a linked-list version, if every element 
contained a non-zero value, would use approximately 280,000 bytes. This is due to the linked-list 
overheads (i.e. a ratio of 28:1).   
 
So what if 50% is used? Approximately 70,000 bytes would be used then; so as you would expect, the 
sparser the matrix, the better, not just with linked-list matrices but any sparse matrix implementation. 
 
In conclusion, linked-lists offer a flexible data-storage solution that can be combined with other methods 
to achieve hybrid configurations, which offer both speed and memory savings. For example, speeding up 
element access times, by using nested linked-lists, or fast search algorithms, are just some ideas to 
explore. 
 
Binary Tree (Search Speedup) 
The binary tree version is basically a way of speeding up the linked-list version by storing the data in a 
binary tree formation. Whereby, when we search for a particular index, we search in a binary tree 
methodology, hence drastically reducing our search time. 
 
Hashing 
In order to achieve an alternative way of building a sparse matrix class to achieve exceptionally good 
access times, ‘hashing’ can be used, whereby indices are mapped to specific memory addresses using a 
hash lookup table and results are achieved in almost near instant access times. A typical implementing 
allocates a large number of elements, which are mapped to a hash lookup table, so each time an element is 
accessed, the hash algorithm generates the index offset within the large array. If there is no element at that 
address (i.e. if it does not exist), then it is added to the hash lookup list. Furthermore, because our matrix 
is sparse, the large chunk of elements we set aside should only be a fraction of the size of what a dense 
matrix allocates. 
 

Note 

Debugging – When working with solvers and matrices it is worth investing some time in learning about 
the various matrix types, e.g. adding code to check for singular matrices, and how ‘bad’ matrices can be 
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tested for. One such example is a matrix where one of its rows is all zeros, and understanding what this 
means. 

 
 
Thinking out of the box 
It is worth experimenting and profiling to aim for the lowest possible memory usage and fastest 
achievable access times. Simple things like caching and coherent memory accesses are good things to 
keep an eye out for. If you access an element at ‘x’, you might cache it so itself and its neighbours can be 
accessed immediately if the next access is itself or its neighbour.  
 
Memory allocations are another factor, which can cause a major slowdown, so adding in a memory pool 
to the array creation/destruction helps with memory delays and fragmentation. Furthermore, using a 
memory manager in conjunction with the sparse matrix would enable partitioning of the memory and 
keeping track of usage; improving bandwidth and giving further control. 
 
Cross platform computability is always a side thought, for example, working with matrices on the GPU, 
in which case the focus needs to be on parallelizing the data and modifying it to take advantage of the 
high number of cores. Further reading on exploiting LCP solvers on the GPU is available in (Nguyen, 
2007).  
 
STABILITY AND RELIABILITY 
One of the biggest problems with writing physics simulators is reliable stable contact/collision 
information. One such example is an object resting on the ground. If the object moves within a minimum 
threshold, the contact information from previous frames should be reused so that it remains constant, and 
the objects converge and settle down. Some collision detection algorithms only return a single contact 
point between frames. Hence, this contact point needs to be stored and a contact manifold over numerous 
frames needs to be built up, which will keep the object from jittering and give a stable rigid body 
stacking. 
 
When writing a simulator, asserts and sanity checks should be used whenever possible, especially checks 
for NaNs, which can arise, more often than not, due to the large number of mathematical operations. This 
will allow the simulation to be halted at the point where it went wrong, so an investigation of what went 
wrong at that moment in time can be made, instead of looking at debug prints or, even worse, randomly 
re-running the code and hoping for it to happen again and guessing what could have gone wrong. 
 
CONCLUSION 
In the scope of this chapter, we introduced LCP solvers as a practical solution for rigid body constraint 
simulations, with an emphasis on clarity and simplicity. It introduced the basic algorithms and their 
implementation so that the reader, having grasped the principles, can go on to more esoteric constructs. 
 
We discussed and compared the two main solver types, acceleration and velocity, upon which we outlined 
their differences and finally went on to focus on the velocity method in the remainder of the chapter, due 
to its effectiveness and simplicity. 
 
The chapter gave special emphasis towards the implementation design, whereby the reader could go away 
and construct a modular flexible simulator with the ability to extend it over time and add original joint 
types effortlessly; where, the crucial steps necessary for constructing new constraints types using 
numerous examples and their Jacobian formulation were presented in a simplified clear-cut approach.  
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FUTURE RESEARCH DIRECTIONS 
This chapter has laid the practical foundations for using solvers to represent a robust constraint simulator. 
Further work entails numerous enhancements to increase performance, either by investigating and 
implementing more sophisticated algorithms (e.g. Successive Over Relaxation Method), or taking 
advantage of today’s highly parallel processors (i.e. CPU or even better the GPU cores). 
While we only introduced a few basic constraints, it is worthwhile experimenting and creating a wider 
range of unique constraints, both equality and inequality. When formulating constraint types, alternative 
derivatives of the equations should be researched and how they perform (e.g. length squared instead of 
length for distance constraints) should be compared. 
 
This chapter has only been a springboard into the world of solvers and it is highly recommend that the 
reader look at the latest literature and explore the subject.   
 
Possible side projects to continue with might include: 
 

• Profiling and optimising code. 
• Displaying kinetic/potential energy of objects. 
• Creating complex constraint structures (bridges, ragdolls, catapult, ropes). 
• Adding further distinctive constraint types. 
• Displaying external and internal constraint forces. 
• Using varying masses for point-mass distant constraint simulations. 
• Analysing and optimising sparse matrix operations, and explore bandwidth speedups. 
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KEY TERMS AND DEFINITIONS 
 
Degrees of Freedom (DOF):  The number of independent ways an object may move, and consequently the 
number of measurements necessary to document the kinematics of the object. 
 
Equations of Motion (EOM):  Is a set of equations, which describe how the objects of the system will 
move as time changes. 
 
Constraint:  Is a limitation or restriction on a Degree of Freedom (DOF) of the system. 
 
Inertia:  The tendency of an object in motion to remain in motion, and of an object at rest to remain at 
rest. 
 
Mass:  A measure of inertia, indicating the resistance of an object to a change in its motion; including a 
change in velocity. A kilogram is a unit of mass. 
 
Centre of Mass (COM):  Also known as the centre of gravity, and represents a centroid point where the 
mass of an object is balanced in all directions. 
 
Weight:  A measure of the gravitational force on an object; the product of mass multiplied by the 
acceleration due to gravity (equal to 9.8 m per second per second). 
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Moment of Inertia:  The resistance of a body to change its state when rotating. 
 
Acceleration:  The rate of change of velocity. 
 
Velocity:  The rate of change of position. 
 
Newton’s Laws of Motion:  The principles, formulated by Sir Isaac Newton (1642-1727), which state 
how objects move. 
 
Linear System:  A linear system is a collection of linear equations. 
 
 
 


