
JOURNAL , VOL. 14, NO. 8, AUGUST 2022 1

Managing Your Video Game Memory
Albert White

Abstract— In this work, we look at a ready-to-use, durable, and computationally fast fixed-size memory pool manager with no-loops
and no-memory overhead that is ideal for time-critical systems like games. This is accomplished by accounting for vacant memory
locations and adopting a trouble-free indexing mechanism. We show how it works with simple step-by-step instructions. Furthermore,
we compare the memory pool manager’s performance to that of a system allocator (e.g., malloc) across a variety of allocations and
sizes.

Index Terms— memory pools; real-time; memory allocation; memory manager; memory de-allocation; dynamic memory

✦

1 INTRODUCTION

A high-quality memory management system is essential for
any application that makes a significant number of alloca-
tions and de-allocations. In hindsight, research has shown
that software can spend up to 50

Nonetheless, the majority of apps employ a generic memory
management system that strives to provide a best-for-all
solution by adapting to every potential case. These tactics
are overkill for some systems, such as gaming, where speed
is crucial. Instead, a simpler method of partitioning memory
into fixed-sized sections known as pools can yield substan-
tial benefits such as higher performance, zero fragmentation,
and memory management. As a result, we concentrate on a
fixed-pool approach and provide a method for formation
and destruction with no overhead and almost no compu-
tational cost. It may also be used in conjunction with an
existing system to produce a simple hybrid solution. Several
instances of various fixed-sized pools, on the other hand,
may be utilised to produce

Alternatively, in some time-critical systems, such as games,
system allocations are kept to a minimal minimum in or-
der for the operation to perform as quickly as possible.
However, for a constantly changing system, memory must
be allowed for changing resources such as data assets
(graphical pictures, music files, scripts) that are loaded
dynamically during runtime. Prior to execution, the sizes
of these resources may be known. As a result, the most
effective memory pool manager is the fixed memory pool
manager. As previously mentioned, a variety of pools may
be employed to execute a best-fit strategy for dealing with
data of varying sizes.

When a memory pool is formed, it initialises all of its
segments. This can be costly since it is normally necessary
to loop through all uninitialized segments. Our technique
creates with minimal processing cost since we just initialise
the first element (i.e., no loops). As a consequence, if a
memory pool is only used halfway before being deleted,
fewer CPU cycles are wasted. Furthermore, in dynamic

memory systems where partitioned memory is continually
produced and removed, the cost of setup may be substantial
(e.g., pools being repeatedly partitioned into smaller pools
at run-time). To summarise, a memory pool may enable an
application run quicker, with more control, better flexibil-
ity, higher customizability, significantly improved resilience,
and decreased fragmentation. To sum up,

The fixed-size pool solution we provide has the following
features: No loops (fast access times) There aren’t any recur-
sive functions. The initial investment is little. Memory use
is really low (few dozen bytes) The algorithm is simple and
devoid of errors. No-fragmentation

The remainder of the paper is organised as follows. We
begin by reviewing comparable work and continue by out-
lining this paper’s significant distinctions and contribution.
Then we’ll go over how memory pools work in detail. Then,
we concentrate on an unique implementation. We talk about
the benefits and drawbacks of our technique. Then, based on
a range of tests, we show a set of practical outcomes (to give
benchmarking data). We conclude with results and research
recommendations.

2 RELATED WORK

Memory management strategies have been intensively re-
searched in recent decades. There are several methods and
algorithms available, some of which are quite complicated
and difficult to understand. The solution we propose here,
on the other hand, is not innovative, but rather a modifica-
tion of an existing technique in which loops and initializa-
tion overheads are eliminated, making the final algorithm
incredibly speedy and simple. With a small memory foot-
print and an O(1) access time, the approach is also one of
the most memory efficient ways known. The appendix has
a rudimentary C++ implementation.

Memory pools have long been used to accelerate memory
allocations and de-allocations in high-performance systems.
In order to minimise pre-fetch time, Zhao et al. used mem-
ory pools to bundle data from upcoming calls into segre-
gated memory. Applegate’s research emphasised the several
approaches and benefits of high-performance memory in

JOURNAL , VOL. 14, NO. 8, AUGUST 2022 2

portable programmes, as well as the benefits of memory
pools. Malakhow goes into further detail on the benefits
of memory pools and their use in high-performance multi-
threaded systems. While Hanson’s single-pool allocator is
equal to ours, our technique is more straightforward and
easier to adapt for ad hoc implementation. Meyers also dis-
cusses performance elements such as macros and monolithic
functions, which may be used to increase speed and gain.

This paper makes a contribution by proposing a realistic,
basic, fixed-size memory pool manager with no loops, very
low memory cost, and computational speed. We next com-
pare the approach to the typical system memory allocator
(e.g., malloc) to provide the reader with a real-world com-
putational comparison of the speed differences.

3 METHOD

When compared to a more difficult and generic solution, the
comparison shows how much faster a simple and intelligent
method can be. We determine what we know and what
we need to compute in order to describe how the fixed-
size memory pool works (to help make the details more
understandable). We get a fixed amount of RAM when we
create the pool.

The accounting algorithm keeps track of unused blocks. To
locate the utilised blocks, we only need to know which
blocks are empty. This list of vacant blocks changes when
blocks are allotted and de-allocated. 1. Explain how wasted
memory is connected (the unused memory blocks store
index information to identify the free space and memory
chunking).

However, we save money on startup by connecting all of the
idle blocks. Alternatively, we initialise a variable that tells us
how many of the n blocks have been added to the unused
list. At each allocation, unused blocks are added to the list,
and the variable containing the number of initialised blocks
is updated.

We can put data in the memory blocks that are being
watched since they are not being used. Each unused block
preserves the index of the next unused block. The pool
keeps track of the head of any unused connected chain.
Memory blocks must have a minimum size constraint in
order for this accounting system to operate. Each memory
block must have a minimum of four bytes. This is due to
each unused memory block containing the index of the next
unused memory block, resulting in a linked list of all unused
blocks. As a result, the index to the next unused block is
retained for each unused block, and so on. The head of the
first unused block.

During allocation, we simply add new, unused blocks to the
list. We keep track of how many blocks have been added
to the list and stop adding new blocks when we reach the
maximum number. By just initialising blocks as needed,
we eliminate loops and starting costs. To summarise, when
blocks are assigned, new unused blocks are initiated and
added to the list as needed.

A simplified step-by-step representation of the fixed-pool
approach in operation. We build a four-brick fixed pool.

We demonstrate how unused blocks and member variables
change sequentially during the construction, allocation, and
de-allocation methods (identifying uninitialized and un-
known memory with question marks the three variables
used by the pool for bookkeeping). Assurance It might
be difficult and error prone to write a bespoke memory
pool allocator. While the fixed size memory pool solution
is simple to construct, it is recommended that extra veri-
fication and sanity checks be included to ensure a robust
and trustworthy implementation. These psychological and
physiological defences

Benchmarking timings of up to 100 times indicate the var-
ious allocation durations of operating within and outside
the debugger). The memory pool has the most control and
may conduct a variety of custom tests. They may be enabled
and deleted at any time, and are less computationally costly
than system memory checks, allowing builds to run quickly
while collecting debug data.

De-allocated memory addresses, for example, are easily
verifiable since each memory address must be inside an
upper and lower border of the continuous memory region.
Furthermore, the de-allocated memory address must be the
same as one of the addresses from the partitioned memory
blocks. Memory guards may be extended even further to
incorporate boundary checks by including a pre and post
byte signature in each block. To discover flaws and offer
sanity checks, these memory guards can be tested globally
(for all blocks) and locally (for the presently erased block).
Leaks can also be discovered by expanding and embedding
memory guards to save extra information about the alloca-
tion, such as the line number.

4 IMPLEMENTATION

The code was written in C++. The pool was estab-
lished using create/destroy routines rather than construc-
tor/destructor approaches so that it could be dynamically
enlarged without destroying and recreating the pool each
time it needed reconfiguration. The implementation in-
cludes four main public functions: Create, Destroy, Allocate,
and De-allocate. In the appendix, you’ll find the source code
for implementing the fixed-size memory pool. All validation
and sanity check code has been removed to keep the source
code as simple and comprehensible as feasible.

5 INITIALIZE POOL

A memory block is assigned or obtained: 1. Save the start
address, number of blocks, and number of uninitialized
unused block Allocator. 2. Look for any open blocks. 3. If
required, start the list and add any unused memory blocks.
Return to the top of the list of unused blocks. 5. Make
the block number from the list’s unused block’s head the
new head. 6. Find the address of the former block head. 7.
Verify the memory address once more. 8. Find out what the
memory address index id is. 9. Rename it to the index id of
the currently unused block’s head and make it the head.

Combining the fixed pool allocator with an existing memory
management system in C++ by overloading the new and

JOURNAL , VOL. 14, NO. 8, AUGUST 2022 3

delete operators would result in improved performance
with the least amount of interruption, because dynamic
memory management can occupy 38

Furthermore, considerable care must be taken to ensure that
classes and structures in C++ that are allocated and de-
allocated by the fixed-size pool allocator have their construc-
tors and destructors explicitly called.

6 LIMITATIONS

The fixed-pool memory manager requires a continuous
block of memory. If the allocated memory block is dis-
persed, this can be a major limiting issue. Furthermore,
we concentrated on the technique rather than the hardware
constraints. For example, a page defect might cause access
times to be 10,000 times slower than usual. Furthermore,
no mention of leveraging the memory pool in a multi-
threaded context has been made. This raises concerns about
scalability and how the memory manager can be managed
across several cores. Furthermore, the memory pool solution
given is confined to direct memory access systems and so
cannot be used in managed memory setups (e.g., Java).

The fixed-size pool allocator’s memory requirements may
cause two primary issues. For starters, if the requested
memory is significantly lower than the slot size, a significant
amount of memory will be squandered. Second, and most
importantly, memory from the pool cannot be allocated if
the requested memory exceeds the slot size. An ad hoc
approach may be utilised to address these issues while
reducing memory waste and misallocations. In this case, a
general system allocator combined with a large number of
fixed-size pools may assist in reducing memory waste while
still benefiting from pool speedups. However, it should be
noted that a big memory management system may become
slower and fragmented over time.

7 RESIZING

The fixed-size memory pool keeps a list of unused memory
blocks. This list is kept in unused memory and is gradually
extended each time a memory block is allocated. As a result,
if more memory blocks are required than are available,
and more memory is required after the continuous memory
pool allocation is complete, the pool may be swiftly and
inexpensively extended by altering its member variables.
Following the establishment of the member variables, the
new memory space will be automatically enlarged and
filled during block allocations. At the present, the algorithm
always allocates the next unused memory block. An extra
check, however, can be added to prohibit the activation of
any further redundant blocks.

8 EXPERIMENTAL RESULTS

The technique itself is simple, with no loops, recursion,
or processing overhead, and it yields extremely rapid al-
locations and de-allocations. We created and de-allocated a
variety of memory chunks to test how much quicker the

memory pool manager is compared to a generic memory
system. According to statistics, the fixed-pool allocator is
ten times quicker than the traditional system allocator and
a thousand times faster when run in debug mode.

9 CONCLUSION AND FURTHER WORK

We demonstrated a simple, unsophisticated, raw-and-ready
memory pool solution that provides extremely fast speeds
with no overhead and has the added benefit of being simple
to comprehend and perform. The fixed-size memory pool is
the ideal solution for programmes such as games, which
presume that memory allocations occur seldom and that
when they do, they are of deterministic size and must be
exceedingly quick (for example, graphical assets, particles,
network packets and so on). Because the suggested tech-
nique is a fundamental building block for developing a
more complex and flexible memory manager, an elegant and
straightforward approach employing a fixed-size memory
pool provides a more robust and scalable solution. However,
extra research might be conducted to investigate additional
data for the algorithm.

REFERENCES

[1] Ben Kenwright. Fast efficient fixed-size memory pool: No loops
and no overhead. Proc. Computation Tools. IARIA, Nice, France, 2012.

	1 INTRODUCTION
	2 RELATED WORK
	3 Method
	4 IMPLEMENTATION
	5 Initialize pool
	6 LIMITATIONS
	7 RESIZING
	8 EXPERIMENTAL RESULTS
	9 CONCLUSION AND FURTHER WORK
	References

