
Fast Efficient Fixed-Size Memory Pool
No Loops and No Overhead

Ben Kenwright

School of Computer Science
Newcastle University

Newcastle, United Kingdom,
b.kenwright@ncl.ac.uk

Abstract--In this paper, we examine a ready-to-use, robust,
and computationally fast fixed-size memory pool manager
with no-loops and no-memory overhead that is highly suited
towards time-critical systems such as games. The algorithm
achieves this by exploiting the unused memory slots for
bookkeeping in combination with a trouble-free indexing
scheme. We explain how it works in amalgamation with
straightforward step-by-step examples. Furthermore, we
compare just how much faster the memory pool manager is
when compared with a system allocator (e.g., malloc) over a
range of allocations and sizes.

Keywords-memory pools; real-time; memory allocation;
memory manager; memory de-allocation; dynamic memory

I. INTRODUCTION

A high-quality memory management system is crucial
for any application that performs a large number of
allocations and de-allocations. In retrospect, studies have
shown that in some cases an application can spend on
average 30% of its processing time within the memory
manager functions [1–4] and in some cases this can be as
high as 43% [5].

However, speed is only one of the features we look at
for a good memory manager; in addition, we are also
concerned with:

• Memory management must not use any resources
(both memory or computational cost)

• Minimize fragmentation
• Complexity (ideally a straightforward and logical

algorithm that can be implemented without too
many problems)

• Ability to verify and identify memory problems
(corruption, leaks).

Nevertheless, the majority of applications use a
general memory management system, which tries to
provide a best-for-all solution by catering for every
possible scenario. For some systems, where speed is
critical, such as games, these solutions are overkill.
Instead, a simplified approach of partitioning the memory
into fixed sized regions known as pools can provide
enormous enhancements, such as increased speed, zero
fragmentation and memory organization.

Hence, we focus on a fixed-pool solution and
introduce an algorithm that has little overhead and almost
no computational cost to create and destroy. In addition,

it can be used in conjunction with an existing system to
provide a hybrid solution with minimum difficulty. On
the other hand, multiple instances of numerous fixed-sized
pools can be used to produce a general overall flexible
general solution to work in place of the current system
memory manager.

Alternatively, in some time critical systems such as
games; system allocations are reduced to a bare minimum
to make the process run as fast as possible. However, for
a dynamically changing system, it is necessary to allocate
memory for changing resources, e.g., data assets
(graphical images, sound files, scripts) which are loaded
dynamically at runtime. The sizes of these resources can
be determined prior to running. This then makes the fixed
memory pool manager ideal. Alternatively, as mentioned
a range of pools can be used for a best-fit approach to
accommodate varying size data.

Naive memory pool implementations initialize all the
memory pool segments when created [6][7]. This can be
expensive since it is usually necessary to loop over all the
uninitialized segments. Our algorithm differs by only
initializing the first element and so has little
computational overhead when it is created (i.e., no loops).
Hence, if a memory pool is only partially used and
destroyed, this wastes fewer processor cycles.
Furthermore, for dynamic memory systems where
partitioned memory is constantly created and destroyed
this initialization cost can be important (e.g., pools being
repeatedly partitioned into smaller pools at run-time).

In summary, a memory pool can make an application
execute faster, give greater control, add greater flexibility,
enable greater customizability, greatly enhance
robustness, and prevent fragmentation. To conclude, this
paper presents the implementation for a straightforward,
fast, flexible, and portable fixed-size memory pool
algorithm that can accomplish O(1) time complexity
memory allocation and de-allocation that is ideal for high
speed applications.

The fixed-size pool algorithm we present boasts the
following properties:

• No loops (fast access times)
• No recursive functions
• Little initialization overhead
• Little memory footprint (few dozen bytes)
• Straightforward and trouble-free algorithm
• No-fragmentation

• Control and organization of memory

The rest of the paper is organized as follows. First,
Section II discusses related work. In Section III , we
outline the contribution of the paper, followed by Section
IV , which gives a detailed explanation of how the
memory pool algorithm works. Section V discusses
practical implementation issues. Section VI outlines some
limitations of the method. Section VIII gives some
benchmark experimental results. Finally, Section IX
draws conclusions and further work.

II. RELATED WORK

The subject of memory management techniques has
been highly studied over the past few decades [8–12][13].
A whole variety of techniques and algorithms are
available, while some of them can be overly complex and
confusing to understand. On the other hand, the technique
we present here is not novel, but is a modification of an
existing technique [14][6][13]; whereby loops and
initialization overheads are removed; this makes the
resulting algorithm extremely fast and straightforward.
The method also boasts of being one of the most memory
efficient implementation available since it has very little
memory footprint and while giving an O(1) access time.
We also give an uncomplicated implementation in C++ in
the appendix.

Memory pools have been a well known choice to
speed-up memory allocations/de-allocations for high-
speed systems [15][16][17]. Zhao et al. [18] grouped data
together from successive calls into segregated memory
using memory pools to reduce pre-fetch latency. An
article by Applegate [19] gave a well-defined overview of
the various methods and advantages of high-performance
memory in portable applications and the advantages of
memory pools. Further discussion in Malakhow [20]
outlines the advantages of memory pools and their
applicability in high-performance multi-threaded systems.

While we present a similar single-pool allocator to
Hanson [7], our algorithm is more clear-cut and makes it
easier to customize for an ad-hoc implementation.

Additionally, performance considerations are
discussed by Meyers [21], e.g., macros and monolithic
functions, that can be applied to gain further speed-ups
and gain greater reliability while incorporating good
coding practices. A comparison of the computational cost
of a memory management system implemented in an
object orientated language (e.g., C++) is less efficient than
one implemented in a functional language (e.g., C)
[3][22]; however, we implemented our fixed-size
memory pool in C++ because we believe it makes it more
re-usable, extensible and modular.

III. CONTRIBUTION

The contribution of this paper is to demonstrate a
practical, simple, fixed-size memory pool manager that
has no-loops, virtually no-memory overhead and is
computationally fast. We also compare the algorithm
with the standard system memory allocator (e.g., malloc)

to give the reader a real-world computational comparison
of the speed differences. The comparison emphasizes just
how much faster a simple and smart algorithm can be over
a more complex and general solution.

IV. HOW IT WORKS

We explain how the fixed-size memory pool works by
defining what information we have and what information
we need to calculate (to help make the details more
understandable, see Figure 1 and Figure 2 for
illustrations).

When the pool is created, we obtain a continuous
section of memory that we know the start and end address
of. This continuous range of memory is subdivided into
equally sized memory blocks. Each memory blocks
address can be identified at this point from the start
address, block-size, and the number of blocks.

This leaves the dynamic bookkeeping part of the
algorithm. The algorithm must keep track of which
blocks are used and un-used as they are allocated and de-
allocated.

We begin by identifying each memory block using a
four-byte index number. This index number can be used
to identify any memory location by multiplying it by the
block size and adding it to the start memory address.
Hence, we have 0 to n-1 blocks; where n is the number of
blocks).

The bookkeeping algorithm works by keeping a list of
the unused blocks. We only need to know which blocks
are being unused to find the used blocks. This list of
unused blocks is modified as blocks are allocated and de-
allocated.

Figure 1. (a) Illustrate how the unused memory is linked together (the

unused memory blocks store index information to identify the free
space). (b) Example of how memory is subdivided into a number of n

blocks.

However, we avoid the cost of initializing and link
together all the unused blocks. We alternatively initialize
a variable to inform us of how many of the n blocks have
been appended to the unused list. Whereby, at each
allocation unused blocks are appended to the list and the
number of initialized blocks variable is updated (see
Figure 1).

0

2

4

2

4

used

used

used

?

Start

End

0

1

2

n-1

n-2

n-3

(e.g., 0x005A1D38)

(e.g., 0x005A1E8C)

Memory block
> 4 bytes

Memory block index number
32 (0 to 2 blocks for 4 byte index)

n equally sized blocks of memory

(a) (b)

The list uses no additional memory. Since the
memory blocks that are being kept track of are not being
used, we can store information inside them. Each unused
block stores the index of the next unused block. The pool
keeps track of the head of the unused linked chain of
blocks.

For this bookkeeping algorithm to work a minimum
size constraint must be imposed on the memory blocks.
The individual memory blocks must be greater than four-
bytes. This is because each unused memory block will
hold the index of the next unused memory block to form a
linked list all the unused blocks.

Therefore, each unused block holds the index to the
next unused block and so on. Our pool stores the index to
the head of the first unused block. For each allocation an
unused block is removed from the list and returned to the
user. We keep track of the head of the unused list of
blocks and is updated after each allocation. Alternatively,
when a block de-allocated we can calculate its index from
its memory address then append it to the list of unused
blocks.

We only add new unused blocks to the list during
allocation. We keep track of how many blocks have been
added to the list and stop appending new blocks when we
have reached the upper limit. This avoids any loops and
initialization costs since we only initialize blocks as we
need them. In summary, as we allocate blocks, further
unused blocks are initialized and appended to the list as

needed.
Figure 1 is used to help further illustrate the working

mechanism of the algorithm; in addition, Listing 1 gives
the pseudo-code.

A. Step-by-Step Example

To follow the fixed-pool method through, we use a
simple step-by-step example shown in Figure 2 to see the
algorithm in action.

We create a fixed pool with four-blocks. We show
how unused blocks and member variables change during
the process of creation, allocation and de-allocation
sequentially from the start (identifying uninitialized and
unknown memory with question marks – the three
variables in Figure 2 represent the necessary variables
used by the pool for bookkeeping).

B. Verification

Writing a custom memory pool allocator can be both
difficult and error prone. While the fixed size memory
pool algorithm is relatively straightforward and trouble-
free to implement, it is advised that additional verification
and sanity checks be incorporated to ensure a robust and
reliable implementation.

These sanity and safety checks can come at the cost of
extra memory usage and increased computational cost.
For example, running experimental simulations of system
allocations within the debugger would increase allocation

Figure 2. Step-by-step example of the memory pools internal workings for a simple 4 slot segmentation - the sequence of events from (a) to (h).

head = ?
numFreeBlock = ?
numInitialized = ?

0

1

2

3

?

?

?

?

head = 0
numFreeBlock = 4
numInitialized = 0

Create Pool

0

1

2

3

?

?

?

?

head = 1
numFreeBlock = 3
numInitialized = 1

out
0

1

2

3

?

?

?

?

head = 2
numFreeBlock = 2
numInitialized = 2

0

1

2

3

?

?

?

?

head = 3
numFreeBlock = 1
numInitialized = 3

0

1

2

3

3

?

?

?

head = 0
numFreeBlock = 2
numInitialized = 3

Allocate Allocate

Allocate DeAllocate

0

1

2

3

3

?

0

?

head = 2
numFreeBlock = 3
numInitialized = 3

DeAllocate

0

1

2

3

3

?

?

4

head = 0
numFreeBlock = 2
numInitialized = 4

out

out

in

in
out

Allocate

(a) (b) (c) (d)

(e) (f) (g) (h)

Allocated
Block of memory

times by up to 100 times (see Figure 3 and Figure 4,
which show the different allocation times of running
within and outside the debugger).

The memory pool gives the maximum amount of
control and can implement various custom checks. They
can be enabled and disable at will, and can be less
computationally expensive than the system memory
checks enabling builds to run at fast speeds while gaining
debug information.

For example, the de-allocated memory addresses can
easily be verified, since each memory address must be
within an upper and lower boundary of the continuous
memory region. Furthermore, the de-allocated memory
address must be the same as one of the addresses from the
divided memory blocks. In addition, memory guards can
be added to include boundary checks by adding a pre and
post byte signature to each block. These memory guards
can be checked globally (i.e., for all blocks) and locally
(i.e., currently deleted block) to identify problems and
provide sanity checks.

Furthermore, leaks can be found by extending and
embedding the memory guards to store additional
information about the allocation; for example, the line
number of the allocation.

V. IMPLEMENTATION

We implemented the code in C++. The pool was
created using create/destroy functions instead of the
constructor/destructor so that the pool could be
dynamically resized without destroying and recreating the
pool each time it needed reconfiguring.

The implementation has four essential public
functions: Create, Destroy, Allocate, and De-allocate.

The fundamental source code that implements the
fixed-size memory pool is given in the appendix. To keep
the source code as straightforward and as easy to read as
possible all the validation and sanity check code has been
excluded.

Initialize pool
[Block of memory is allocated or obtained]
1. Store the start address, number of blocks and the
number of uninitialized unused block
Allocator

2. Check if there any free blocks
3. If necessary - initialize and append unused memory
block to the list
4. Go to the head of the unused block list
5. Extract the block number from the head of the unused
block in the list and set it as the new head
6. Return the address for the old block head
De-allocator

7. Check the memory address is valid
8. Calculate the memory addresses index id
9. Set its contents to the index id of the current head of
unused blocks and set itself as the head

Listing 1. Pseudo-code for pool.

Combining the fixed pool allocator with an existing
memory management system in C++ by overloading the

new and delete operators would give better performance
with the minimum amount of disruption, since 38% of
execution time can be consumed by the dynamic memory
management [3]. This ad-hoc approach works by
checking the memory allocation size within the new
operator; if space is available inside the pool, and the size
is within a specified tolerance the memory is taken from
the pool, but if not, the general system allocator is called
to supply the memory.

Additionally, the greatest care must be exercised to
ensure that classes and structures in C++ that are allocated
and de-allocated by the fixed-size pool allocator have
their constructors and destructors manually called.

VI. LIMITATIONS

The fixed-pool memory manager relies on it being
assigned a continuous block of memory. This can be a
serious limiting factor if the assigned block of memory is
scattered around.

Furthermore, we have focused on the algorithm and
not discussed hardware limitations. For example, a page
fault can result in an access time being 10,000 times
slower than normal. Additionally, we have not addressed
the issue of using the memory pool in a multi-threaded
environment. This also raises the question of how the
memory manager can be managed across multiple cores
and the subject of scalability.

As well, the presented memory pool implementation is
limited to systems with direct access to the memory and
so cannot be implemented in managed memory
environments (e.g., Java and C#).

The amount of memory requested from the fixed-size
pool allocator can raise two major problems. Firstly, if
the requested memory is dramatically smaller than the
slot-size then lots of memory will be wasted. Secondly,
and worse, if the requested memory is greater than the
slot-size then it is impossible to allocate memory from the
pool. Nevertheless, to combat these problems and to
reduce memory wastage and largely miss-sized
allocations an ad-hoc solution can be used. Whereby, a
general system allocator in conjunction with multiple
fixed-size pools would help to reduce memory wastage
while still benefiting from the pool speedups.

On the other hand, it should be pointed out, that a
general memory management system could become
slower and fragmented over time. Whereby, a suitable
block of memory would require considerable searching
overhead, in addition to, small chunks of unsuitable and
unusable memory being scattered around.

VII. RESIZING

The fixed-size memory pool holds a list of unused
memory blocks. This list resides in the unused memory
and is incrementally extended when a memory block is
allocated. Hence, if more memory blocks are needed than
are available, and further additional memory follows the
end of the continuous memory pools allocation, the pool
can be extended effortlessly with little cost by updating its
member variables. Once the member variables have been

updated to incorporate the new end memory address it
will automatically extend and fill the new region of
memory during block allocations.

The algorithm currently always initializes the next
unused memory block during the allocation call.
However, an additional check can be added to avoid
initialization of further unused blocks if they are not
needed. For this reason, we could identify the maximum
allocated number of unused blocks. Then, optionally the
large pool of memory could be resized-down without
needing to destroy and re-create the pool.

VIII. EXPERIMENTAL RESULTS

The algorithm itself is simple with no loops, no
recursion, and little computational cost, and produces
extremely fast allocations and de-allocations. To get a
ballpark idea of how much faster the memory pool
manager can be over a general memory system; we
allocated and de-allocated a range of memory chunks as
shown in Figure 3 and Figure 4. The figures show the
fixed-pool allocator to be ten times faster than the general
system allocator, and a thousand times faster when
running within a debug environment.

IX. CONCLUSION AND FURTHER WORK

We have shown a fundamental, unsophisticated, raw-
and-ready memory pool algorithm that produces
remarkably fast speeds with nearly no-overhead and
boasts the added advantage of being straightforward to
understand and easy to implement. The fixed-size
memory pool provides the best solution for processes such
as games, which assume that relatively few memory
allocations happen, and when they do happen they are of a
deterministic size and need to be extremely fast (for
example, graphical assets, particles, network packets and
so on).

The Keep It Short and Simple (K.I.S.S) approach was
a target goal for the fixed-size memory pool since the
presented algorithm is a fundamental building block for
constructing, if desired, a more elaborate and flexible
memory manager.

Further work is needed to investigate if the algorithm
could be optimised to use less decisional logic (i.e., if
statements). In addition to exploring hardware
considerations (e.g., caching, paging, registers, memory
alignment, threading) and how the algorithm can be
enhance to accommodate platform specific speed-ups.

REFERENCES
[1] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles,

“Dynamic storage allocation: A survey and critical review,”
Lecture Notes in Computer Science, pp. 1–1, 1995.

[2] B. Zorn, “Empirical measurements of six allocation-
intensive C programs,” ACM Sigplan notices, no. July,
1992.

[3] B. Calder and D. Grunwald, “Quantifying behavioral
differences between C and C++ programs,” Journal of
Programming, vol. 2, no. 4, pp. 313–351, 1994.

[4] W. Li, S. Mohanty, and K. Kavi, “A Page-based Hybrid
(Software-Hardware) Dynamic Memory Allocator,” IEEE

Computer Architecture Letters, vol. 5, no. 2, pp. 13-13,
Feb. 2006.

[5] E. Berger and B. Zorn, “Reconsidering custom memory
allocation,” Sciences-New York, 2002.

[6] J. Deng, “Why to use memory pool and how to implement
it,” (3 July), 2008. [Online]. Available:
http://www.codeproject.com/Articles/27487/Why-to-use-
memory-pool-and-how-to-implement-it. [Accessed: 06-Jan-
2011].

[7] R. D. Hanson, C Interfaces and Implementation. O’Reilly
Safari, 1997.

[8] A. Gorine, “Memory Management and Embeded
Databases,” Dr. Dobb’s (1st December), 2005. [Online].
Available: http://drdobbs.com/database/184406355.
[Accessed: 06-Jan-2011].

[9] J. Bartlett, “Inside Memory Management: The choices,
tradeoffs, and implementations of dynamic allocation,”
IBM (16th November), 2004. [Online]. Available:
http://www.ibm.com/developerworks/linux/library/l-
memory/. [Accessed: 06-Jan-2011].

[10] J. L. Risco-Martín, J. M. Colmenar, D. Atienza, and J. I.
Hidalgo, “Simulation of high-performance memory
allocators,” Microprocessors and Microsystems, vol. 35,
pp. 755-765, Aug. 2011.

[11] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Composing
high-performance memory allocators,” in ACM SIGPLAN
Notices, 2001, vol. 36, no. 5, pp. 114–124.

[12] D. Atienza, J. M. Mendias, S. Mamagkakis, D. Soudris, and
F. Catthoor, “Systematic dynamic memory management
design methodology for reduced memory footprint,” ACM
Transactions on Design Automation of Electronic Systems,
vol. 11, no. 2, pp. 465-489, Apr. 2006.

[13] D. Lea, “A memory allocator,” 1996. [Online]. Available:
http://gee.cs.oswego.edu/dl/html/malloc.html. [Accessed:
06-Jan-2011].

[14] Stephen Cleary, “Boost C++ Memory Pool Librarys,” (5th
December), 2006. [Online]. Available:
www.boost.org/libs/pool;
http://www.boost.org/doc/libs/1_47_0/libs/pool/doc/concep
ts.html. [Accessed: 06-Jan-2011].

[15] D. Bulka and D. Mayhew, Efficient C++: performance
programming techniques. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[16] D. Gay and A. Aiken, Memory management with explicit
regions, vol. 33, no. 5. ACM, 1998, pp. 313-323.

[17] K. Frazer, C++ in action: industrial-strngth programming
techniques. SIGSOFT Softw. Eng. Notes, 2002.

[18] Q. Zhao and R. Rabbah, “Dynamic memory optimization
using pool allocation and prefetching,” ACM SIGARCH
Computer Architecture, 2005.

[19] D. A. Applegate, “Rethinking Memory Management :
Portable techniques for high performance,” Dr. Dobb’s
(June), 1994. [Online]. Available:
www.ddj.com/184409253/. [Accessed: 06-Jan-2011].

[20] A. Malakhow, “Scalable Memory Pools: community
preview feature. Retrieved from Intel Software Network,”
Intel (December 19), 2011. [Online]. Available:
http://software.intel.com/en-us/blogs/2011/12/19/scalable-
memory-pools-community-preview-feature/. [Accessed:
06-Jan-2011].

[21] S. Meyers, More Effective C++: 35 New Ways to Improve
Your Programs and Designs. Addison-Wesley Longman
Publishing Co., 1995.

[22] D. Detlefs, A. Dosser, and B. Zorn, “Memory allocation
costs in large C and C++ programs,” Software: Practice
and Experience (June), vol. 24, no. 6, pp. 527-542, 1994.

APPENDIX

A. Fixed-Size Pool Manager - C++ Code
class Pool_c
{ // Basic type define
 typedef unsigned int uint;
 typedef unsigned char uchar;

 uint m_numOfBlocks; // Num of blocks
 uint m_sizeOfEachBlock; // Size of each block
 uint m_numFreeBlocks; // Num of remaining blocks
 uint m_numInitialized; // Num of initialized blocks
 uchar* m_memStart; // Beginning of memory pool
 uchar* m_next; // Num of next free block
public:

 Pool_c()
 {
 m_numOfBlocks = 0;
 m_sizeOfEachBlock = 0;
 m_numFreeBlocks = 0;
 m_numInitialized = 0;
 m_memStart = NULL;
 m_next = 0;
 }
 ~Pool_c() { DestroyPool(); }

 void CreatePool(size_t sizeOfEachBlock,
 uint numOfBlocks)
 {
 m_numOfBlocks = numOfBlocks;
 m_sizeOfEachBlock = sizeOfEachBlock;
 m_memStart = new uchar[m_sizeOfEachBlock *
 m_numOfBlocks];
 m_numFreeBlocks = numOfBlocks;
 m_next = m_memStart;
 }

 void DestroyPool()
 {
 delete[] m_memStart;
 m_memStart = NULL;
 }

 uchar* AddrFromIndex(uint i) const
 {
 return m_memStart + (i * m_sizeOfEachBlock);
 }

 uint IndexFromAddr(const uchar* p) const
 {
 return (((uint)(p - m_memStart)) / m_sizeOfEachBlock);
 }

 void* Allocate()
 {
 if (m_numInitialized < m_numOfBlocks)
 {
 uint* p = (uint*)AddrFromIndex(m_numInitialized);
 *p = m_numInitialized + 1;
 m_numInitialized++;
 }

 void* ret = NULL;
 if (m_numFreeBlocks > 0)
 {
 ret = (void*)m_next;
 --m_numFreeBlocks;
 if (m_numFreeBlocks!=0)
 {
 m_next = AddrFromIndex(*((uint*)m_next));
 }
 else
 {
 m_next = NULL;
 }
 }
 return ret;
 }

 void DeAllocate(void* p)
 {
 if (m_next != NULL)
 {
 (*(uint*)p) = IndexFromAddr(m_next);
 m_next = (uchar*)p;
 }
 else
 {
 ((uint)p) = m_numOfBlocks;
 m_next = (uchar*)p;
 }
 ++m_numFreeBlocks;
 }

}; // End pool class

Listing 2. C++ Source Code.

B. System Information
Simulation tests were performed on a machine with the

following specifications: Windows7 64-bit, 16Gb Memory,
Intel i7-2600 3.4Ghz CPU. Compiled and tested with Visual
Studio.

C. Speed Comparison Graphs
Each line represents a fixed allocation size and the time

taken to allocate repeatedly.

Figure 3. Release build with full optimization running within the
debugger (Time in ms); system malloc only.

(a)

(b)

Figure 4. Running outside the debugger – standalone (Time in ms);
(a)system malloc and, (b)custom pool.

