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Abstract--In this paper, we examine a ready-to-use, robust, 
and computationally fast fixed-size memory pool manager 
with no-loops and no-memory overhead that is highly suited 
towards time-critical systems such as games.  The algorithm 
achieves this by exploiting the unused memory slots for 
bookkeeping in combination with a trouble-free indexing 
scheme.  We explain how it works in amalgamation with 
straightforward step-by-step examples.  Furthermore, we 
compare just how much faster the memory pool manager is 
when compared with a system allocator (e.g., malloc) over a 
range of allocations and sizes. 
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I. INTRODUCTION 

A high-quality memory management system is crucial 
for any application that performs a large number of 
allocations and de-allocations.  In retrospect, studies have 
shown that in some cases an application can spend on 
average 30% of its processing time within the memory 
manager functions [1–4] and in some cases this can be as 
high as 43% [5].  

However, speed is only one of the features we look at 
for a good memory manager; in addition, we are also 
concerned with: 

• Memory management must not use any resources 
(both memory or computational cost) 

• Minimize fragmentation 
• Complexity (ideally a straightforward and logical 

algorithm that can be implemented without too 
many problems) 

• Ability to verify and identify memory problems 
(corruption, leaks). 

Nevertheless, the majority of applications use a 
general memory management system, which tries to 
provide a best-for-all solution by catering for every 
possible scenario.  For some systems, where speed is 
critical, such as games, these solutions are overkill.  
Instead, a simplified approach of partitioning the memory 
into fixed sized regions known as pools can provide 
enormous enhancements, such as increased speed, zero 
fragmentation and memory organization. 

Hence, we focus on a fixed-pool solution and 
introduce an algorithm that has little overhead and almost 
no computational cost to create and destroy.  In addition, 

it can be used in conjunction with an existing system to 
provide a hybrid solution with minimum difficulty.  On 
the other hand, multiple instances of numerous fixed-sized 
pools can be used to produce a general overall flexible 
general solution to work in place of the current system 
memory manager.  

Alternatively, in some time critical systems such as 
games; system allocations are reduced to a bare minimum 
to make the process run as fast as possible.  However, for 
a dynamically changing system, it is necessary to allocate 
memory for changing resources, e.g., data assets 
(graphical images, sound files, scripts) which are loaded 
dynamically at runtime.  The sizes of these resources can 
be determined prior to running.  This then makes the fixed 
memory pool manager ideal.  Alternatively, as mentioned 
a range of pools can be used for a best-fit approach to 
accommodate varying size data. 

Naive memory pool implementations initialize all the 
memory pool segments when created [6][7].  This can be 
expensive since it is usually necessary to loop over all the 
uninitialized segments.  Our algorithm differs by only 
initializing the first element and so has little 
computational overhead when it is created (i.e., no loops).  
Hence, if a memory pool is only partially used and 
destroyed, this wastes fewer processor cycles.  
Furthermore, for dynamic memory systems where 
partitioned memory is constantly created and destroyed 
this initialization cost can be important (e.g., pools being 
repeatedly partitioned into smaller pools at run-time). 

In summary, a memory pool can make an application 
execute faster, give greater control, add greater flexibility, 
enable greater customizability, greatly enhance 
robustness, and prevent fragmentation.  To conclude, this 
paper presents the implementation for a straightforward, 
fast, flexible, and portable fixed-size memory pool 
algorithm that can accomplish O(1) time complexity 
memory allocation and de-allocation that is ideal for high 
speed applications. 

The fixed-size pool algorithm we present boasts the 
following properties: 

• No loops (fast access times) 
• No recursive functions 
• Little initialization overhead 
• Little memory footprint (few dozen bytes) 
• Straightforward and trouble-free algorithm 
• No-fragmentation 



 

• Control and organization of memory 

The rest of the paper is organized as follows.  First, 
Section II  discusses related work.  In Section III , we 
outline the contribution of the paper, followed by Section 
IV , which gives a detailed explanation of how the 
memory pool algorithm works.  Section V discusses 
practical implementation issues.  Section VI  outlines some 
limitations of the method.  Section VIII  gives some 
benchmark experimental results.  Finally, Section IX 
draws conclusions and further work. 

II. RELATED WORK 

The subject of memory management techniques has 
been highly studied over the past few decades [8–12][13].  
A whole variety of techniques and algorithms are 
available, while some of them can be overly complex and 
confusing to understand.  On the other hand, the technique 
we present here is not novel, but is a modification of an 
existing technique [14][6][13]; whereby loops and 
initialization overheads are removed; this makes the 
resulting algorithm extremely fast and straightforward.  
The method also boasts of being one of the most memory 
efficient implementation available since it has very little 
memory footprint and while giving an O(1) access time.  
We also give an uncomplicated implementation in C++ in 
the appendix. 

Memory pools have been a well known choice to 
speed-up memory allocations/de-allocations for high-
speed systems [15][16][17].  Zhao et al. [18] grouped data 
together from successive calls into segregated memory 
using memory pools to reduce pre-fetch latency. An 
article by Applegate [19] gave a well-defined overview of 
the various methods and advantages of high-performance 
memory in portable applications and the advantages of 
memory pools.  Further discussion in Malakhow [20] 
outlines the advantages of memory pools and their 
applicability in high-performance multi-threaded systems.  

While we present a similar single-pool allocator to 
Hanson [7], our algorithm is more clear-cut and makes it 
easier to customize for an ad-hoc implementation. 

Additionally, performance considerations are 
discussed by Meyers [21], e.g., macros and monolithic 
functions, that can be applied to gain further speed-ups 
and gain greater reliability while incorporating good 
coding practices.  A comparison of the computational cost 
of a memory management system implemented in an 
object orientated language (e.g., C++) is less efficient than 
one implemented in a functional language (e.g., C) 
[3][22];  however, we implemented our fixed-size 
memory pool in C++ because we believe it makes it more 
re-usable, extensible and modular. 

III.  CONTRIBUTION 

The contribution of this paper is to demonstrate a 
practical, simple, fixed-size memory pool manager that 
has no-loops, virtually no-memory overhead and is 
computationally fast.  We also compare the algorithm 
with the standard system memory allocator (e.g., malloc) 

to give the reader a real-world computational comparison 
of the speed differences.  The comparison emphasizes just 
how much faster a simple and smart algorithm can be over 
a more complex and general solution. 

IV.  HOW IT WORKS 

We explain how the fixed-size memory pool works by 
defining what information we have and what information 
we need to calculate (to help make the details more 
understandable, see Figure 1 and Figure 2 for 
illustrations). 

When the pool is created, we obtain a continuous 
section of memory that we know the start and end address 
of.  This continuous range of memory is subdivided into 
equally sized memory blocks.  Each memory blocks 
address can be identified at this point from the start 
address, block-size, and the number of blocks. 

This leaves the dynamic bookkeeping part of the 
algorithm.  The algorithm must keep track of which 
blocks are used and un-used as they are allocated and de-
allocated.   

We begin by identifying each memory block using a 
four-byte index number.  This index number can be used 
to identify any memory location by multiplying it by the 
block size and adding it to the start memory address.  
Hence, we have 0 to n-1 blocks; where n is the number of 
blocks). 

The bookkeeping algorithm works by keeping a list of 
the unused blocks.  We only need to know which blocks 
are being unused to find the used blocks.  This list of 
unused blocks is modified as blocks are allocated and de-
allocated. 

 

 
Figure 1.  (a) Illustrate how the unused memory is linked together (the 

unused memory blocks store index information to identify the free 
space).  (b) Example of how memory is subdivided into a number of n 

blocks. 

However, we avoid the cost of initializing and link 
together all the unused blocks.  We alternatively initialize 
a variable to inform us of how many of the n blocks have 
been appended to the unused list.  Whereby, at each 
allocation unused blocks are appended to the list and the 
number of initialized blocks variable is updated (see 
Figure 1). 
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The list uses no additional memory.  Since the 
memory blocks that are being kept track of are not being 
used, we can store information inside them.  Each unused 
block stores the index of the next unused block.  The pool 
keeps track of the head of the unused linked chain of 
blocks.   

For this bookkeeping algorithm to work a minimum 
size constraint must be imposed on the memory blocks.  
The individual memory blocks must be greater than four-
bytes.  This is because each unused memory block will 
hold the index of the next unused memory block to form a 
linked list all the unused blocks. 

Therefore, each unused block holds the index to the 
next unused block and so on.  Our pool stores the index to 
the head of the first unused block.  For each allocation an 
unused block is removed from the list and returned to the 
user.  We keep track of the head of the unused list of 
blocks and is updated after each allocation.  Alternatively, 
when a block de-allocated we can calculate its index  from 
its memory address then append it to the list of unused 
blocks. 

We only add new unused blocks to the list during 
allocation.  We keep track of how many blocks have been 
added to the list and stop appending new blocks when we 
have reached the upper limit.  This avoids any loops and 
initialization costs since we only initialize blocks as we 
need them.  In summary, as we allocate blocks, further 
unused blocks are initialized and appended to the list as 

needed. 
Figure 1 is used to help further illustrate the working 

mechanism of the algorithm; in addition, Listing 1 gives 
the pseudo-code. 

A. Step-by-Step Example 

To follow the fixed-pool method through, we use a 
simple step-by-step example shown in Figure 2 to see the 
algorithm in action. 

We create a fixed pool with four-blocks.  We show 
how unused blocks and member variables change during 
the process of creation, allocation and de-allocation 
sequentially from the start (identifying uninitialized and 
unknown memory with question marks – the three 
variables in Figure 2 represent the necessary variables 
used by the pool for bookkeeping).  

B. Verification 

Writing a custom memory pool allocator can be both 
difficult and error prone.  While the fixed size memory 
pool algorithm is relatively straightforward and trouble-
free to implement, it is advised that additional verification 
and sanity checks be incorporated to ensure a robust and 
reliable implementation. 

These sanity and safety checks can come at the cost of 
extra memory usage and increased computational cost.  
For example, running experimental simulations of system 
allocations within the debugger would increase allocation 

 

 
Figure 2.  Step-by-step example of the memory pools internal workings for a simple 4 slot segmentation - the sequence of events from (a) to (h). 
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times by up to 100 times (see Figure 3 and Figure 4, 
which show the different allocation times of running 
within and outside the debugger). 

The memory pool gives the maximum amount of 
control and can implement various custom checks.  They 
can be enabled and disable at will, and can be less 
computationally expensive than the system memory 
checks enabling builds to run at fast speeds while gaining 
debug information. 

For example, the de-allocated memory addresses can 
easily be verified, since each memory address must be 
within an upper and lower boundary of the continuous 
memory region.  Furthermore, the de-allocated memory 
address must be the same as one of the addresses from the 
divided memory blocks.  In addition, memory guards can 
be added to include boundary checks by adding a pre and 
post byte signature to each block.  These memory guards 
can be checked globally (i.e., for all blocks) and locally 
(i.e., currently deleted block) to identify problems and 
provide sanity checks. 

Furthermore, leaks can be found by extending and 
embedding the memory guards to store additional 
information about the allocation; for example, the line 
number of the allocation.   

V. IMPLEMENTATION 

We implemented the code in C++.  The pool was 
created using  create/destroy functions instead of the 
constructor/destructor so that the pool could be 
dynamically resized without destroying and recreating the 
pool each time it needed reconfiguring. 

The implementation has four essential public 
functions: Create, Destroy, Allocate, and De-allocate. 

The fundamental source code that implements the 
fixed-size memory pool is given in the appendix.  To keep 
the source code as straightforward and as easy to read as 
possible all the validation and sanity check code has been 
excluded. 
 
Initialize pool 
[ Block of memory is allocated or obtained ] 
1.   Store the start address, number of blocks and the 
number of uninitialized unused block 
Allocator 

2.   Check if there any free blocks 
3.   If necessary - initialize and append unused memory 
block to the list 
4.   Go to the head of the unused block list 
5.   Extract the block number from the head of the unused 
block in the list and set it as the new head 
6.   Return the address for the old block head 
De-allocator 

7.   Check the memory address is valid 
8.   Calculate the memory addresses index id 
9.   Set its contents to the index id of the current head of 
unused blocks and set itself as the head 

Listing 1.  Pseudo-code for pool. 

Combining the fixed pool allocator with an existing 
memory management system in C++ by overloading the 

new and delete operators would give better performance 
with the minimum amount of disruption, since 38% of 
execution time can be consumed by the dynamic memory 
management [3].  This ad-hoc approach works by 
checking the memory allocation size within the new 
operator;  if space is available inside the pool, and the size 
is within a specified tolerance the memory is taken from 
the pool, but if not, the general system allocator is called 
to supply the memory.  

Additionally, the greatest care must be exercised to 
ensure that classes and structures in C++ that are allocated 
and de-allocated by the fixed-size pool allocator have 
their constructors and destructors manually called. 

VI.  LIMITATIONS  

The fixed-pool memory manager relies on it being 
assigned a continuous block of memory.  This can be a 
serious limiting factor if the assigned block of memory is 
scattered around.  

Furthermore, we have focused on the algorithm and 
not discussed hardware limitations.  For example, a page 
fault can result in an access time being 10,000 times 
slower than normal.  Additionally, we have not addressed 
the issue of using the memory pool in a multi-threaded 
environment.  This also raises the question of how the 
memory manager can be managed across multiple cores 
and the subject of scalability. 

As well, the presented memory pool implementation is 
limited to systems with direct access to the memory and 
so cannot be implemented in managed memory 
environments (e.g., Java and C#). 

The amount of memory requested from the fixed-size 
pool allocator can raise two major problems.  Firstly, if 
the requested memory is dramatically smaller than the 
slot-size then lots of memory will be wasted.  Secondly, 
and worse, if the requested memory is greater than the 
slot-size then it is impossible to allocate memory from the 
pool.  Nevertheless, to combat these problems and to 
reduce memory wastage and largely miss-sized 
allocations an ad-hoc solution can be used.  Whereby, a 
general system allocator in conjunction with multiple 
fixed-size pools would help to reduce memory wastage 
while still benefiting from the pool speedups. 

On the other hand, it should be pointed out, that a 
general memory management system could become 
slower and fragmented over time.  Whereby, a suitable 
block of memory would require considerable searching 
overhead, in addition to, small chunks of unsuitable and 
unusable memory being scattered around. 

VII.  RESIZING 

The fixed-size memory pool holds a list of unused 
memory blocks.  This list resides in the unused memory 
and is incrementally extended when a memory block is 
allocated.  Hence, if more memory blocks are needed than 
are available, and further additional memory follows the 
end of the continuous memory pools allocation, the pool 
can be extended effortlessly with little cost by updating its 
member variables.  Once the member variables have been 



 

updated to incorporate the new end memory address it 
will automatically extend and fill the new region of 
memory during block allocations.  

The algorithm currently always initializes the next 
unused memory block during the allocation call.  
However, an additional check can be added to avoid 
initialization of further unused blocks if they are not 
needed.  For this reason, we could identify the maximum 
allocated number of unused blocks.  Then, optionally the 
large pool of memory could be resized-down without 
needing to destroy and re-create the pool. 

VIII.  EXPERIMENTAL RESULTS 

The algorithm itself is simple with no loops, no 
recursion, and little computational cost, and produces 
extremely fast allocations and de-allocations.  To get a 
ballpark idea of how much faster the memory pool 
manager can be over a general memory system; we 
allocated and de-allocated a range of memory chunks as 
shown in Figure 3 and Figure 4.  The figures show the 
fixed-pool allocator to be ten times faster than the general 
system allocator, and a thousand times faster when 
running within a debug environment. 

IX. CONCLUSION AND FURTHER WORK 

We have shown a fundamental, unsophisticated, raw-
and-ready memory pool algorithm that produces 
remarkably fast speeds with nearly no-overhead and 
boasts the added advantage of being straightforward to 
understand and easy to implement.  The fixed-size 
memory pool provides the best solution for processes such 
as games, which assume that relatively few memory 
allocations happen, and when they do happen they are of a 
deterministic size and need to be extremely fast (for 
example, graphical assets, particles, network packets and 
so on). 

The Keep It Short and Simple (K.I.S.S) approach was 
a target goal for the fixed-size memory pool since the 
presented algorithm is a fundamental building block for 
constructing, if desired, a more elaborate and flexible 
memory manager. 

Further work is needed to investigate if the algorithm 
could be optimised to use less decisional logic (i.e., if 
statements).  In addition to exploring hardware 
considerations (e.g., caching, paging, registers, memory 
alignment, threading) and how the algorithm can be 
enhance to accommodate platform specific speed-ups. 
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APPENDIX 

A. Fixed-Size Pool Manager - C++ Code 
class Pool_c 
{ // Basic type define 
  typedef unsigned int    uint; 
  typedef unsigned char   uchar; 
     
  uint   m_numOfBlocks;     // Num of blocks 
  uint   m_sizeOfEachBlock; // Size of each block 
  uint   m_numFreeBlocks;   // Num of remaining blocks 
  uint   m_numInitialized;  // Num of initialized blocks   
  uchar* m_memStart;        // Beginning of memory pool 
  uchar* m_next;            // Num of next free block 
public: 
 
  Pool_c() 
  { 
    m_numOfBlocks     = 0; 
    m_sizeOfEachBlock = 0; 
    m_numFreeBlocks   = 0; 
    m_numInitialized  = 0; 
    m_memStart        = NULL; 
    m_next            = 0; 
  } 
  ~Pool_c() { DestroyPool(); } 
 
  void CreatePool(size_t sizeOfEachBlock,  
                  uint numOfBlocks) 
  { 
    m_numOfBlocks     = numOfBlocks; 
    m_sizeOfEachBlock = sizeOfEachBlock; 
    m_memStart        = new uchar[ m_sizeOfEachBlock * 
                                     m_numOfBlocks ]; 
    m_numFreeBlocks   = numOfBlocks; 
    m_next            = m_memStart; 
  } 
 
  void DestroyPool() 
  { 
    delete[] m_memStart; 
    m_memStart = NULL; 
  } 
 
  uchar* AddrFromIndex(uint i) const 
  { 
    return m_memStart + ( i * m_sizeOfEachBlock ); 
  } 
 
  uint IndexFromAddr(const uchar* p) const 
  { 
   return (((uint)(p - m_memStart)) / m_sizeOfEachBlock); 
  } 
 
  void* Allocate() 
  { 
    if (m_numInitialized < m_numOfBlocks ) 
    { 
      uint* p = (uint*)AddrFromIndex( m_numInitialized ); 
      *p = m_numInitialized + 1; 
       m_numInitialized++; 
    } 
 
    void* ret = NULL; 
    if ( m_numFreeBlocks > 0 ) 
    { 
      ret = (void*)m_next; 
      --m_numFreeBlocks; 
      if (m_numFreeBlocks!=0) 
      { 
         m_next = AddrFromIndex( *((uint*)m_next) ); 
      } 
      else  
      { 
         m_next = NULL; 
      } 
    } 
    return ret; 
  } 
 
  void DeAllocate(void* p) 
  { 
     if (m_next != NULL) 
     { 
        (*(uint*)p) = IndexFromAddr( m_next ); 
        m_next = (uchar*)p; 
     } 
     else  
     { 
        *((uint*)p) = m_numOfBlocks; 
        m_next = (uchar*)p; 
     } 
     ++m_numFreeBlocks; 
  } 

}; // End pool class 

Listing 2.  C++ Source Code. 

B. System Information 
Simulation tests were performed on a machine with the 

following specifications:  Windows7 64-bit, 16Gb Memory, 
Intel i7-2600 3.4Ghz CPU.  Compiled and tested with Visual 
Studio. 

C. Speed Comparison Graphs 
Each line represents a fixed allocation size and the time 

taken to allocate repeatedly. 

 

Figure 3.  Release build with full optimization running within the 
debugger (Time in ms); system malloc only. 

(a) 

(b) 

Figure 4.  Running outside the debugger – standalone (Time in ms); 
(a)system malloc and, (b)custom pool. 


