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Active Game Characters
Beyond Ragdoll Puppets

Ben Kenwright

Abstract—We want to go beyond “passive rag-doll like” simulation characters towards more “active” intelligent self-driven
solutions. The “puppet on strings” approach lacks dynamic interactive properties for engaging realistic and immersive virtual
environments. This paper focuses on “Self-Driven character” (e.g., procedural physics-based techniques) that balance and react
in a life-like manner using physical properties (e.g., ground contacts, mass, and strength).

Index Terms—procedural, ragdoll, puppet, stepping, interactive, balancing, character, animation, physics-based, responsive,
adaptive, dynamic, 3D, video-games, inverted-pendulum, ankle-torque, controllable, autonomous, intelligent
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1 INTRODUCTION

T he days of repetitive pre-recorded key-framed animation
solutions are coming to an end. Research across multiple

fields, such as biomechanics, robotics, and graphics, are now
developing more intelligent self-driven systems that use physical
principles to mimic human movements in a life-like way, to
produce a new generation of immersive engaging and interactive
character solutions.

For example, a crucial movement that is indispensable in mul-
tiple fields, such as graphics and robotics, is simulating balance
recovery in a life-like and realistic way. Nevertheless, creating
interactive virtual characters that react to random unforeseen
disturbances and are able to recover from them (i.e., regain
their balance) in a human-like way that mimics the real-world
is challenging and interesting [20], [8], [10], [21], [1].

1.1 Challenges

So why is it so to reproduce life-like human movements in real-
time ‘and’ without key-frame data? Why has it eluded us for so
long? We give the main reasons here:

Realism is particularly difficult, as a particular character model
gives rise to a large set of possible motions with different styles.
Even if robust and stabilizing control laws can be found, it is
challenging to construct those that reproduce the intricate and
agile movements we observe in nature.

Then there is model complexity, since a character can have
an extremely high number of degrees of freedom, making the
search for the appropriate control parameters hard (e.g., adult
human body has over 200 hundred bones). Although continuous
numerical optimizations can cope with large search spaces, the
stringent demands of interactive applications make it clear that
optimization cannot solely be performed at the time control is
needed.

The discontinuous non-linear character work-space (e.g., joint
limits and contacts) restricts movement within a certain region of
three-dimensional space; these constraints are difficult to maintain
in real-time simulation systems, such as games. Furthermore,
frequent ground contacts create a highly discontinuous search
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space rendering most continuous controller synthesis methods
ineffective at planning over longer time horizons.

Dynamically simulated characters are difficult to control be-
cause they have no direct control over their global position
and orientation (i.e., underactuation). Even staying upright is a
challenge for large disturbances. In order to succeed, a control
law must plan ahead to determine actions that can stabilize the
body [13].

2 RELATED WORK

How have these challenging problems of generating life-like
interactive characters been solved before? Which methods have
made us ‘sit-up’ and take notice and why? This is what we aim
to address in this section.

To begin with, there are, the manually designed physics-based
biped balance controllers [23], [18], which can be optimized for
robust behaviors [21], [1], or combined with other techniques
(e.g., motion capture data) to produce hybrid solutions with life-
like dynamic responses [4]. While controller-based approaches are
often intuitive and computationally fast and robust, they can be
cumbersome to tune (i.e., the different parameters) and produce
only simple motions (e.g., balanced standing and walking). Then
again, solutions to these problems have been proposed, such as an
automatic search-based algorithms to tune controller parameters
automatically [20] based on velocity tracking of motion capture
data.

Data-driven solutions are able to adapt character poses so
they transition seamlessly [15], mix animation sequences [22]
or modify sequences so they account for changing environments
and disturbances (e.g., pushes) [19]. However, data-drive methods
cannot generate unique motions, and highly depend on the input
motion capture data.

This paper adopts a ‘non data-driven’ technique with a
controller-based solution, that is a procedural physics-based con-
troller approach. Where the physics-based model ensures the
movement is physically plausible, the controller gives the model
a goal (e.g., balanced stepping, walking, steering), and the proce-
dural aspect provides intermediate transition solutions, such as
behavioral aspects that include how the character is walking,
standing, and looking around.

It is interesting to note, that if we taking a look at bio-
mechanical research, in the area of balance, there is a reaction
time for humans responding loss of balance [12], [11], [14].
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Going beyond basic stepping for balance recovery, it should
be mentioned, that there are other methods of re-gaining bal-
ance, that include, grasping, stretching, and squatting strategies
demonstrated in other work [2], [16], [3]. However, this paper
demonstrates exploits stepping and ankle torque as a means of
balance recover and control [9], [7].

This paper addresses the challenge of generating automatic
key-frameless self-driven biped animations that are able to
fluidly synthesize realistic three-dimensional human move-
ment while handling arbitrary and unexpected disturbances
during standing and walking. We propose the use of a low-
dimensional model for generating fundamental balanced motions
that are interactive and dynamic, inspired by Kenwright [6], [8] for
combining physics-based techniques with a procedural self-driven
model to produce autonomous real-time agents that are interactive
and responsive.

3 FRACTALS, PHYSICS, BIOMECHANICS, AND MORE

These are very exciting times for computer graphics animation. A
number of diverse and original techniques are becoming plausible
and practical with computers increasing in speed. For example,
virtual humans solutions are mixing robotics based methods
with biomechanically inspired techniques to produce more life-
like physically correct and interactive characters that break the
mold. The days of hard-coded, inflexible, data-driven solutions
are making way for procedural self-driven smart solutions [6],
[5], [17], [8].

4 THE KEY TO LIFE IS BALANCE

Controlled life-like dynamic balance is absolutely crucial. What
exactly do we mean? Well it is relatively easy to create “statically”
balanced movements. We can keep the overall body centre of mass
above the support feet region. Timidly shifting the body mass be-
tween the left and right foot during foot transitions. However, this
produces, life-less robotic-like scared looking movements, while a
human, in reality, relishes its dynamic instability, constantly losing
and recovering balance in an effortless life-like way. Emulating
this balanced movement without key-framed data while remaining
in ‘control’ is ambitious and difficult.

4.1 Stepping in holes
In the real world, the terrain is very rarely constantly flat and
level. In practicality, when we step we are constrained to where
we can place our feet. We need to avoid obstacles, such as holes,
while remaining balanced and in control. Furthermore, navigating
the terrain at a controlled speed in a particular style that mimics
a human (e.g., happy or sad), needs to be included in the final
solution before it can be a viable practical alternative for replacing
a data-driven key-framed system.

5 SUMMARY

Multiple factors, such as computational speed, naturalness, re-
alism, and robustness all contribute towards what makes an
animation system a viable solution. Creating an animation system
that tackles each of these challenges is difficult and important.
In practice, as addressed in this paper, the challenges can be
subdivided into individual problems (e.g., balanced stepping,
arm movement, and behavioral random motions) that are solved
separately. This makes a modular solution that gives the end user
the ability to swap and change different components and create a
system that meets their particular demands.
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